
UNIVERSITY OF PAVIA
FACULTY OF ENGINEERING

DEPARTMENT OF ELECTRICAL, COMPUTER AND BIOMEDICAL ENGINEERING

MASTER’S DEGREE IN COMPUTER ENGINEERING

MASTER THESIS

Automated Feature Mapping for Audio DeepFake Detection

Mappatura Automatica delle Features per il Rilevamento di

DeepFake Audio

Candidate: Andrea Alberti

Supervisor: Prof. Claudio Cusano

A.Y. 2023/2024

“A chi mi ha mostrato che con determinazione e cuore,

ogni traguardo è possibile.”

Abstract

The proliferation of audio deepfake technology poses significant challenges

to cybersecurity, privacy, and trust. Generated using advanced artificial

intelligence techniques, audio deepfakes can imitate human speech with re-

markable accuracy, leading to potential abuses such as identity theft, fraud,

and disinformation. Detecting such synthetic audio has become critically

important as these technologies continue to evolve.

This thesis explores audio deepfake detection by proposing novel Ma-

chine Learning (ML) and Deep Learning (DL) approaches, with a primary

focus on improving feature extraction and automating the feature map-

ping process. A comprehensive analysis of various audio features, such as

Mel-spectrograms, MFCC (Mel-Frequency Cepstral Coe!cients), and CQT

(Constant-Q Transform), among others, is conducted, enhancing their e”ec-

tiveness through the use of CNNs. Additionally, a fully end-to-end approach

(DeepSpectraNetE2E) is proposed, allowing the model to autonomously

learn time-frequency representations directly from raw audio, thus automat-

ing the entire feature extraction process.

AlongsideDeepSpectraNetE2E, three other models (DeepSpectraNet, Deep-

SpectraNetFlex, and DeepSpectraNetLite) are introduced, all of which sur-

pass existing models in the literature. Experimental results demonstrate

that these deep learning models significantly outperform traditional ma-

chine learning models in terms of accuracy and generalization. The results

also highlight the e”ectiveness of combining multiple audio features and

using CNN-based feature mapping strategies to enhance frequency-related

information within the signal.

This work contributes to audio deepfake detection by proposing four

new models that improve accuracy and generalize better in the detection of

sophisticated synthetic audio by providing novel mapping strategies along

with automated feature extraction.

Sommario

La proliferazione della tecnologia dei deepfake audio pone sfide significative

alla sicurezza informatica, alla privacy e alla fiducia. Generati utilizzando

tecniche avanzate di intelligenza artificiale, i deepfake audio possono imitare

il parlato umano con notevole accuratezza, portando a potenziali abusi come

furto d’identità, frodi e disinformazione. La rilevazione di tali audio sintetici

è diventata di importanza critica poiché queste tecnologie continuano a

evolversi.

Questa tesi esplora la rilevazione dei deepfake audio proponendo nuovi

approcci di Machine Learning (ML) e Deep Learning (DL), con un focus

principale sul miglioramento dell’estrazione delle features e sull’automazione

del mappaggio delle stesse viene condotta un’analisi completa su diverse fea-

tures audio, come spettrogrammi di Mel, MFCC (Mel-Frequency Cepstral

Coe!cients) e CQT (Constant-Q Transform), tra le altre, aumentandone

l’e!cacia attraverso l’uso di CNN. Inoltre, viene proposto un approccio

completamente end-to-end (DeepSpectraNetE2E), che permette al modello

di apprendere autonomamente le rappresentazioni tempo-frequenza diretta-

mente dall’audio grezzo, automatizzando cos̀ı l’intero processo di estrazione

delle features.

Oltre a DeepSpectraNetE2E, vengono introdotti altri tre modelli (Deep-

SpectraNet, DeepSpectraNetFlex, eDeepSpectraNetLite), che superano i mod-

elli esistenti in letteratura. I risultati sperimentali dimostrano come questi

modelli di deep learning superino significativamente i modelli tradizionali

di machine learning in termini di accuratezza e generalizzazione. I risultati,

inoltre, evidenziano l’e!cacia della combinazione di più features audio e

dell’uso di strategie di mappaggio delle features basate su reti neurali con-

voluzionali (CNN) che aumentino le informazioni relative alle frequenze del

segnale.

In conclusione, questo lavoro contribuisce al campo della rilevazione dei

deepfake audio proponendo quattro nuovi modelli che, grazie a strategie

di mappaggio innovative e all’automazione dell’estrazione delle features,

migliorano l’accuratezza e la generalizzazione nella rilevazione di sofisticati

audio sintetici.

Contents

1 Introduction 1

1.1 Context . 1

1.1.1 What are DeepFakes? 2

1.1.2 History of DeepFakes 3

1.2 Research Rationale . 4

1.2.1 DeepFakes Applications 5

1.3 Research Questions . 6

1.4 Thesis Outline . 8

2 Background 10

2.1 Audio DeepFakes Typologies 10

2.1.1 Text-to-Speech (TTS) 10

2.1.2 Voice Conversion (VC) 13

2.1.3 Partially Fake Audios 13

2.1.4 Replay Attack . 14

2.2 DeepFake Detection Methods 14

2.2.1 Signal Processing Methods 15

2.2.2 Traditional Machine Learning Methods 15

2.2.3 Deep Learning Methods 16

2.3 Audio Features . 17

2.4 Machine Learning Models 21

2.4.1 Traditional Models 21

2.4.2 Deep Learning Models 30

3 Methods and Experiments 36

3.1 Dataset . 36

3.1.1 Dataset Selection . 36

3.1.2 Dataset Preprocessing 38

3.2 Feature Engineering . 39

i

3.2.1 Feature Extraction Hyperparameters 39

3.2.2 Extraction Details 42

3.3 ML Models . 45

3.3.1 Base Models . 45

3.3.2 Features Reduction (RFE) 46

3.4 DL Models . 48

3.4.1 Transfer Learning . 48

3.4.2 3-Channels Mapping 52

3.4.3 Combining Fine-Tuning and Mapping 54

3.4.4 Combining Features 55

3.4.5 Final Model . 57

3.4.6 Fully E2E Version . 58

4 Results and Explainability 60

4.1 Experimental Setup . 60

4.1.1 Local Machine . 60

4.1.2 Lightning AI Cloud 61

4.2 Evaluation Metrics . 61

4.2.1 Accuracy . 62

4.2.2 Balanced Accuracy 63

4.2.3 F1 Score . 63

4.2.4 PR AUC . 64

4.2.5 ROC AUC . 64

4.2.6 Equal Error Rate (EER) 65

4.3 Results . 66

4.3.1 Traditional Machine Learning 66

4.3.2 Deep Learning . 75

4.3.3 Overall Comparison 91

4.4 Explainability . 93

4.4.1 Traditional Machine Learning 93

4.4.2 Deep Learning . 95

5 Conclusions 108

A Feature Engineering Supplementary Results 116

B Models Supplementary Results 121

C Explainability Supplementary Results 128

List of Figures

1.1 Timeline of DeepFake Technology 3

2.1 Support Vector Machines Hyperplane Selection 23

2.2 Illustration of the Kernel Trick in SVM 25

2.3 Random Forest Visualization 26

2.4 CatBoost Algorithm - Sourced from [1] 29

2.5 Multilayer Perceptron Architecture - Sourced from [2] 31

2.6 Convolutional Neural Network Architecture - Sourced from [3] 33

3.1 Neural Features Extraction Process 45

3.2 3D Mapper Implementation Schema 52

3.3 3D Mapper Look-Up Table Schema 53

3.4 3D Mapper Schema with Parameters Reduction 56

3.5 Ensemble DL Model Schema 56

3.6 Fully E2E Model Additional Preprocessing Module 59

4.1 Avg Extraction Interval Impact Across Models: a) equalized

num. samples across intervals, b) varying num. samples

across intervals. 67

4.2 Avg Feature Type Performance Across Models: a) equalized

num. samples across intervals , b) varying num. samples

across intervals. 68

4.3 Impact of hop (y-axis) and window length on: a) Random

Forest performance, b) SVM performance. 70

4.4 Final RF Model Curves for Test Set 73

4.5 Final RF Model Curves for Validation Set 73

4.6 Final RF Model Confusion Matrix 74

4.7 Extraction Interval Impact with Varying Num. Samples Across

Intervals. Features Extracted Using: a) VGG16 with batch

normalization, b) MobileNetV3. 76

iii

4.8 Feature Type Performance with Varying Num. Samples Across

Intervals. Features Extracted Using: a) VGG16 with batch

normalization, b) MobileNetV3. 77

4.9 MFCC and CQT Features Before and After Preprocessing. . 78

4.10 Impact of Hop and Window Length (Reported on y-axis) on

MobileNetV3 Performance. 79

4.11 VGG16 Layers Impact on Performance. 80

4.12 ROC Curve Detail of DeepSpectraNet at Di”erent FPR Levels 90

4.13 Final RF model feature importance according to RFE 94

4.14 Final RF Model Most Important Features Mean and Variance 95

4.15 Final RF Model MFCC Behavior on Waveform and Spectro-

gram . 96

4.16 ROC and PR curves of DeepSpectraNet on: a) Test Set, b)

Validation Set. 97

4.17 Confusion Matrix of DeepSpectraNet 98

4.18 Worst Errors of DeepSpectraNet 98

4.19 DeepSpectraNet Mapper Output for a Random Fake Audio

Sample on Di”erent Evaluation Sets. (Mapper Input on the

left, Mapper Learned Output on the right). 99

4.20 DeepSpectraNetE2E Learned Features for Random Fake Au-

dio Sample (Validation Set) 102

4.21 DeepSpectraNetE2E Learned Features for Random Fake Au-

dio Sample (Test Set) . 103

4.22 Grad-CAM Analysis of DeepSpectraNet on a Validation Set

Sample. Grad-CAM Combined refers to the combined model

which takes both MFCC and CQT features as input, while

Grad-CAM Separated is obtained splitting the combined model

into two separate models, one for each feature set. 104

4.23 Grad-CAM Analysis of DeepSpectraNet on a Test Set Sam-

ple. Grad-CAM Combined refers to the combined model

which takes both MFCC and CQT features as input, while

Grad-CAM Separated is obtained splitting the combined model

into two separate models, one for each feature set. 105

4.24 Average Grad-CAM of DeepSpectraNet on Validation Set

Subset splitted in TP (upper left), TN (lower left), FP (up-

per right), FN (lower right) samples. a) Results for the CQT

features, b) Results for the MFCC features. 105

4.25 Average Grad-CAM of DeepSpectraNet on Test Set Subset

splitted in TP (upper left), TN (lower left), FP (upper right),

FN (lower right) samples. a) Results for the CQT features,

b) Results for the MFCC features. 106

A.1 Results of all the combinations of extraction intervals, feature

types and models of the traditional ML approach, evaluated

with 2 metrics on the three sets (train, test and validation).

The num. samples is equalized across intervals. On y-axis,

the extraction interval is shown. 117

A.2 Results of all the combinations of extraction intervals, feature

types and models of the traditional ML approach, evaluated

with 2 metrics on the three sets (train, test and validation).

The num. samples is not equalized across intervals. On y-

axis, the extraction interval is shown. 118

A.3 Results of all the combinations of extraction intervals, fea-

ture types and models of the neural features approach based

on MobileNetV3. The evaluation is made with 2 metrics on

the three sets (train, test and validation). The images are

normalized as illustrated in Listing 3.1. On y-axis, the ex-

traction interval is shown. 119

A.4 Results of all the combinations of extraction intervals, feature

types and models of the neural features approach based in

VGG16. The evaluation is made with 2 metrics on the three

sets (train, test and validation). The images are normalized

as illustrated in Listing 3.1. On y-axis, the extraction interval

is shown. 120

B.1 Results of traditional ML, concatenating all the features (20

per type) including mel-spectrogram and reduced to 20, 30,

40, 80 and 100 features using RFE. 125

B.2 Results of traditional ML, concatenating all the features (20

per type) excluding mel-spectrogram and reduced to 20, 30,

40, 80 and 100 features using RFE. 126

B.3 Results of traditional ML, concatenating all the features (40

per type) excluding mel-spectrogram and reduced to 20, 30,

40, 80 and 100 features using RFE. 127

C.1 ROC and PR curves of DeepSpectraNetLite on: a) Validation

Set, b) Test Set. 129

C.2 Confusion Matrix of DeepSpectraNetLite 129

C.3 ROC and PR curves of DeepSpectraNetFlex on: a) Valida-

tion Set, b) Test Set. 130

C.4 Confusion Matrix of DeepSpectraNetFlex 130

C.5 ROC and PR curves of DeepSpectraNetE2E on: a) Valida-

tion Set, b) Test Set. 131

C.6 Confusion Matrix of DeepSpectraNetE2E 131

C.7 Worst Errors of DeepSpectraNetLite 132

C.8 Worst Errors of DeepSpectraNetFlex 132

C.9 Worst Errors of DeepSpectraNetE2E 132

C.10 DeepSpectraNetLite Mapper Output for a Random CQT Fake

Audio Sample (Validation Set) 133

C.11 DeepSpectraNetLite Mapper Output for a Random CQT Fake

Audio Sample (Test Set) . 133

C.12 DeepSpectraNetLite Mapper Output for a Random MFCC

Fake Audio Sample (Validation Set) 133

C.13 DeepSpectraNetLite Mapper Output for a Random MFCC

Fake Audio Sample (Test Set) 134

C.14 DeepSpectraNetFlex Mapper Output for a Random CQT

Fake Audio Sample (Validation Set) 134

C.15 DeepSpectraNetFlex Mapper Output for a Random CQT

Fake Audio Sample (Test Set) 134

C.16 DeepSpectraNetFlex Mapper Output for a Random MFCC

Fake Audio Sample (Validation Set) 135

C.17 DeepSpectraNetFlex Mapper Output for a Random MFCC

Fake Audio Sample (Test Set) 135

C.18 Grad-CAM Analysis of DeepSpectraNetLite on a Test Set

Sample. Grad-CAM Combined refers to the combined model

which takes both MFCC and CQT features as input, while

Grad-CAM Separated is obtained splitting the combined model

into two separate models, one for each feature set. 136

C.19 Grad-CAM Analysis of DeepSpectraNetLite on a Validation

Set Sample. Grad-CAM Combined refers to the combined

model which takes both MFCC and CQT features as input,

while Grad-CAM Separated is obtained splitting the com-

bined model into two separate models, one for each feature

set. 136

C.20 Grad-CAM Analysis of DeepSpectraNetFlex on a Test Set

Sample. Grad-CAM Combined refers to the combined model

which takes both MFCC and CQT features as input, while

Grad-CAM Separated is obtained splitting the combined model

into two separate models, one for each feature set. 137

C.21 Grad-CAM Analysis of DeepSpectraNetFlex on a Validation

Set Sample. Grad-CAM Combined refers to the combined

model which takes both MFCC and CQT features as input,

while Grad-CAM Separated is obtained splitting the com-

bined model into two separate models, one for each feature

set. 137

C.22 Average Grad-CAM of DeepSpectraNetLite on Validation

Set Subset splitted in TP (upper left), TN (lower left), FP

(upper right), FN (lower right) samples. a) Results for the

CQT features, b) Results for the MFCC features. 138

C.23 Average Grad-CAM of DeepSpectraNetLite on Test Set Sub-

set splitted in TP (upper left), TN (lower left), FP (upper

right), FN (lower right) samples. a) Results for the CQT

features, b) Results for the MFCC features. 138

C.24 Average Grad-CAM of DeepSpectraNetFlex on Validation

Set Subset splitted in TP (upper left), TN (lower left), FP

(upper right), FN (lower right) samples. a) Results for the

CQT features, b) Results for the MFCC features. 139

C.25 Average Grad-CAM of DeepSpectraNetFlex on Test Set Sub-

set splitted in TP (upper left), TN (lower left), FP (upper

right), FN (lower right) samples. a) Results for the CQT

features, b) Results for the MFCC features. 139

List of Tables

3.1 Feature Engineering Hyperparameters - Part 1 42

3.2 Feature Engineering Hyperparameters - Part 2 42

3.3 Comparison of Transfer Learning (Feature Extraction) Choices

for VGG16 and MobileNetV3 49

3.4 MLP Architectures for MobileNetV3 50

3.5 Comparison of Transfer Learning (Fine-Tuning) Choices for

VGG16 and MobileNetV3 51

3.6 3D Mapper Architectures . 54

3.7 Parameter Reduction through Pooling Techniques 55

4.1 Di”erent Class Imbalance Scenarios for Metrics Comparison 62

4.2 Traditional ML baseline results 71

4.3 Traditional ML Results Combining the Features and Reduc-

ing them Using RFE . 72

4.4 Final RF Model Metrics Compared with Baseline Models and

State-Of-The-Art ML . 74

4.5 DL Transfer Learning (Feature Extraction) Results 80

4.6 DL Transfer Learning (Fine Tuning) Results 81

4.7 Best Results of Di”erent 3D Mapper Architectures with VGG16 82

4.8 Results of Combining Fine Tuning and Mapping with Di”er-

ent Architectures (VGG16) 84

4.9 Results of Fine Tuning and Mapping with Di”erent Param-

eters Reduction Methods (VGG16) 85

4.10 Results of Multi-Feature Approach (Evaluated on a Subset

of the Full Evaluation Data) 86

4.11 Final DL model Metrics Compared with Baseline Models and

SOTA DL models (All the Values Are in %. Evaluation Done

on The Full Dataset) . 87

4.12 Final Models Training Time and Number of Parameters . . . 91

viii

4.13 Comparison of The Proposed Models Based on Traditional

ML and DL Approaches (All The Values Are in %. Evalua-

tion Done on The Full Dataset) 93

B.1 Results of All Tested 3D Mapper Configurations and Features 124

Listings

3.1 IQR based Min-Max Scaling for images 44

3.2 VGG16 Layers Selection . 49

3.3 MLP for VGG16 . 50

3.4 3D Mapper CNN Implementation Example 52

B.1 3D Mapper CNN Implementation (64-128-3-sigmoid) 121

B.2 3D Mapper CNN Implementation (64-128-3-learnable) . . . 121

B.3 3D Mapper CNN Implementation (64-128-3-none) 122

B.4 3D Mapper CNN Implementation (64x5-3x1-sigmoid) 123

B.5 3D Mapper CNN Implementation (3-1-sigmoid) 123

x

Chapter 1

Introduction

The sweeping advances in the frontiers of AI and machine learning have

resulted in the evolution of sophisticated technologies able to create highly

realistic synthetic content. Deepfakes are one such important technological

development that enables the creation of convincingly faked media in the

forms of images, videos, and audio. While deepfake technology does have

much potential for applications in entertainment, education, and healthcare,

it is also emerging as a technology that presents significant challenges, more

so in areas related to cybersecurity, fraud, and disinformation.

This thesis focuses specifically on audio deepfakes, with synthesized

voices facilitated by high-end AI techniques. The misapplication of deep-

fakes has already caused a few fraud, identity theft, and disinformation

cases, raising critical concerns across certain sectors. Audio deepfake detec-

tion thus becomes one of the important domains of study to mitigate the

potential negative impacts of this technology.

The objective of this research is to explore and enhance the detection of

audio deepfakes through the use of both traditional machine learning and

deep learning approaches. Focusing on feature enhancement and automated

mapping, this work propose novel models that aim to improve detection

accuracy and generalization.

1.1 Context

In the digital era, the ability to manipulate media has evolved from sim-

ple touch-ups to sophisticated alterations that challenge our perception of

reality. Among these technologies, DeepFakes represent a significant leap

forward in digital content manipulation. This section delves into the origins

1

and evolution of DeepFakes, setting the stage for a comprehensive discussion

on their implications and the technological arms race they have sparked.

1.1.1 What are DeepFakes?

Deepfakes represent a newer development in the realm of manipulation of

digital media using sophisticated technologies of artificial intelligence to ei-

ther fabricate or tamper with video, audio, and images in the way they

appear to create a false impression of certain real situations. Deep learn-

ing algorithms such as Generative Adversarial Networks have been utilized

to synthetically create human images and sounds indistinguishable from

natural recordings.

The name ‘DeepFake’ is just an abbreviation for what this is based

on, namely, ‘deep learning’ and ‘fake’, since it is based upon deep neural

networks to create or manipulate fake media content. These changes are

such that they can fool detection with traditional means, either human or

automated, and hence are powerful in misinformation, entertainment, or

evil.

While this is promising considering the line of changing reality convinc-

ingly, potential consequences for privacy, security, and integrity of informa-

tion have turned this technology into one of the hot debates, with urgent

calls for e”ective detection and regulation strategies. This research delves

deeper into the aspects of technical understanding and, more importantly,

ethical and social implications of the emergence of DeepFakes.

Technical Foundations

Nowadays, the creation of DeepFakes mainly involves training a model us-

ing two neural networks that work against each other in what’s known as a

Generative Adversarial Network (GAN). One network, the generator, cre-

ates images or sequences, while the other, the discriminator, evaluates them.

Over time, the generator learns to produce more accurate fakes, trying to

outsmart the discriminator until the discriminator can no longer distinguish

real from fake.

This technology stems from research that has grown rapidly since the

introduction of GANs in 2014 by Ian Goodfellow and his colleagues [4].

Early DeepFakes were rudimentary and easily detectable, but recent ad-

vancements have led to hyper-realistic results. These improvements are

2

powered by the increasing availability of computational resources and large

datasets of facial images and audio recordings, which allow the algorithms

to learn and mimic finer human details.

1.1.2 History of DeepFakes

Figure 1.1: Timeline of DeepFake Technology

The concept of altering video and audio content dates back to the late

20th century. In 1997, Bregler et al. developed ‘Video Rewrite’ [5], a pro-

gram that could modify the lip movements in video footage to match a

di”erent audio track, laying the groundwork for more advanced techniques

in facial reanimation and synchronization. The wider academic community

began to take notice of DeepFakes in 2016 when Thies et al. presented

‘Face2Face’ [6], a real-time facial reenactment system that could manipu-

late a video of one person to match the facial expressions of another. This

groundbreaking work demonstrated the potential of AI to create convincing

3

fake videos. One year later, deepfake was brought to the public’s atten-

tion when a Reddit user named ‘deepfake’ [7] shared explicit videos with

the faces of celebrities swapped into pornographic content. This marked a

turning point, bringing the potential and risks of this technology to the fore-

front of public awareness. Soon after, tools that enabled literally anybody

to generate DeepFakes in a painless manner were created. A good exam-

ple is the open-source ‘DeepFaceLab’ [8] where face swapping in a target

video is enabled an open-source software that allows users to swap faces in

videos with minimal e”ort. During the last few years, the quality of Deep-

Fakes has reached an unprecedented level of realism, making them nearly

indistinguishable from genuine media to the human eye and ear. Advances

in deep learning and generative adversarial networks (GANs) have enabled

the creation of synthetic content that mimics intricate facial expressions,

voice intonations, and other subtle nuances with astonishing accuracy. As a

result, even trained professionals often struggle to identify DeepFakes with-

out assistance. This has led to a pressing need for sophisticated detection

technologies which leverage AI and machine learning to analyze inconsis-

tencies and artifacts that are imperceptible to humans. Tools like these

are crucial for maintaining the integrity of information and preventing the

malicious use of DeepFake technology. This work aims to explore the detec-

tion of DeepFakes in audio content, focusing on synthetic voice generated

by state-of-the-art text-to-speech models.

1.2 Research Rationale

The decision to focus this thesis on audio deepfake detection comes from the

critical need to address the challenges posed by the misuse of synthetic audio

technologies. As discussed in the following section about the applications

of audio deepfakes, the technology o”ers both positive potential and signifi-

cant risks. The rapid advancement and accessibility of deepfake technology

amplify its capacity for harm, particularly in the realms of misinformation,

fraud, and cybersecurity threats.

The proliferation of deepfake tools has simplified the creation and distri-

bution of fake audio content by malicious actors, posing threats to individu-

als, organizations, and societal stability. The impact of these threats is not

merely hypothetical but has been demonstrated through various incidents

that have had real-world consequences. Thus, developing e”ective detection

4

methods is paramount to maintaining trust in audio communications and

safeguarding digital interactions.

This thesis aims to contribute to the growing field of digital forensics

by focusing on audio deepfakes. By enhancing our understanding of au-

dio deepfake generation and detection, we can develop more robust systems

to identify and mitigate these threats, ensuring that the benefits of syn-

thetic audio technologies can be realized without the accompanying risks

overshadowing them.

1.2.1 DeepFakes Applications

In this section, we explore the applications of audio deepfakes, highlighting

their potential benefits and risks across various sectors.

Positive Applications

• Healthcare: Audio deepfakes are used to create synthetic voices for pa-

tients with speech impairments [9]. This technology can help head and

neck cancer survivors communicate more e”ectively, significantly improv-

ing their quality of life. Synthetic voices can also anonymize patient data,

facilitating safer and broader sharing of medical information for research

purposes while maintaining patient confidentiality [10].

• Entertainment and Media: The entertainment industry utilizes audio

deepfakes to recreate voices for dubbing in di”erent languages, enabling

a wider reach for movies and TV shows. It also helps in preserving the

voices of deceased actors for continuity in long-running series or films.

Moreover, audio deepfakes can enhance the experience of audiobooks by

using the author’s synthetic voice for narration [11].

• Education: For educational purposes, audio deepfakes can produce per-

sonalized learning experiences, such as creating custom voice assistants

that can interact with students in their native languages or accents. This

technology can also help in producing accurate and engaging audio con-

tent, broadening access to knowledge and learning resources.

Negative Applications

• Fraud and Identity Theft: One of the most concerning uses of audio

deepfakes is in fraud and identity theft. Fraudsters can use cloned voices

5

to impersonate individuals in phone scams. For instance, a notable case

involved criminals using AI to mimic a CEO’s voice, successfully tricking

a subordinate into transferring a significant amount of money [12].

• Disinformation and Fake News: Audio deepfakes can be employed to

spread disinformation by creating fake speeches or statements from public

figures, thereby influencing public opinion and creating political unrest.

A relevant example was a deepfake created in 2022, featuring Ukrainian

President Volodymyr Zelensky instructing Ukrainian forces to surrender

to Russian troops, which was shared on social media platforms [13]. This

shows how these fabricated audio clips can be used in spear-phishing

attacks or to propagate false information on social media platforms, un-

dermining trust in legitimate news sources [7].

• Cybersecurity Threats: The use of audio deepfakes poses significant

risks to cybersecurity. Cybercriminals can exploit this technology for es-

pionage, blackmail, and other malicious activities. Deepfake audio can

manipulate voice-operated systems, potentially gaining unauthorized ac-

cess to secure systems or sensitive information [12].

In summary, while audio deepfakes o”er innovative applications across

various sectors, they also pose substantial risks. Positive implementations in

healthcare, entertainment, and education showcase the potential for benefi-

cial impacts. However, the intrinsic risks associated with their misuse, such

as loss of trust and significant economic damages, underscore the urgent

need for vigilance and proactive measures. This thesis explores the com-

plexities of audio deepfakes, aiming to contribute to a deeper understanding

and development of strategies to harness their potential while mitigating the

risks.

1.3 Research Questions

The increasing sophistication of audio deepfakes presents both opportuni-

ties and challenges across various domains, from entertainment and health-

care to cybersecurity and disinformation. Given the critical importance of

detecting audio deepfakes accurately, this thesis addresses several key re-

search questions aimed at improving detection methodologies and exploring

the underlying challenges.

6

• RQ1: What are the preliminary factors that most influence a

correct deepfake detection?

The aim of this question is to identify the key factors that contribute to

the accurate detection of audio deepfakes. Examples of such factors are

the length of the audio clip and the window and hop sizes for spectral

features extraction.

• RQ2: What are the most important audio features for accu-

rately identifying deepfakes?

This question is focused to determine which audio features, such as MFCC,

CQT, Mel-spectrogram, and others, contribute the most to di”erentiating

between authentic and synthetic audio. Through an empirical analysis

of feature importance in both machine learning and deep learning mod-

els, the research aims to identify the strengths and limitations of various

audio features in detecting deepfakes.

• RQ3: How e!ective are traditional machine learning models in

detecting audio deepfakes?

With this research question the goal is to explore the capabilities of tra-

ditional machine learning techniques in the detection of synthetic audio.

Traditional models, such as Random Forest and Support Vector Machines

(SVM), will be evaluated based on their ability to distinguish between

real and fake audio samples. The research will also investigate how these

models can be optimized to improve detection accuracy and robustness.

• RQ4: Can deep learning models represent a leap forward in au-

dio deepfake detection?

With the rise of end-to-end deep learning models, this question inves-

tigates whether deep learning approaches provide superior performance

compared to traditional machine learning methods. By leveraging neu-

ral networks that extract high-level features automatically, this research

examines whether these models can generalize better to unseen deepfake

generation techniques.

• RQ5: How does feature combination a!ect the performance of

models in detecting audio deepfakes?

Di”erent audio features capture distinct aspects of the audio signal, such

as frequency, time, and amplitude. This question explores the impact of

combining multiple audio features on the performance of deepfake detec-

7

tion models. By combining diverse features like MFCC, CQT, and Mel-

spectrograms, the research aims to assess the models’ ability changes in

detecting synthetic audio.

• RQ6: How can the features be improved to enhance the detec-

tion of audio deepfakes?

This question delves into feature engineering techniques that can enhance

the quality and informativeness of audio features for deepfake detection.

By implementing Deep Learning based automated feature extraction and

mapping strategies, the goal is to improve the performance of the models

in distinguishing between real and synthetic audio.

• RQ7: How can model explainability techniques be applied to

understand the decision-making process of deep learning mod-

els?

Given the complexity of deep learning models, understanding how these

models make decisions is crucial. This question explores the use of tech-

niques like Grad-CAM and Mapper Analysis to interpret the model’s

predictions, identifying key areas in the audio data that influence the

detection of deepfakes. The insights gained from these explainability

methods will help in improving model transparency and trustworthiness.

Through these research questions, the thesis aims to push the boundaries

of current detection methods and provide a comprehensive understanding

of the strengths and weaknesses of various approaches.

1.4 Thesis Outline

This section provides a roadmap of the thesis, outlining the structure and

sequence of chapters and the key topics covered in each.

• Chapter 1: Introduction: Establishes the foundational context, moti-

vations, and research questions related to audio deepfakes. It covers the

essence of what deepfakes are, their historical context, and the rationale

behind focusing on audio deepfake detection.

• Chapter 2: Background: Explores deepfake typologies, detection tech-

niques, and the theoretical frameworks utilized in deepfake analysis. This

8

section details the technologies and methods underpinning deepfake de-

tection, including traditional and machine learning-based approaches,

alongside discussions on audio features and models.

• Chapter 3: Methods and Experiments: Describes the methodologies

used in the research, from dataset selection and feature engineering to the

detailed implementation of machine learning and deep learning models.

• Chapter 4: Results and Explainability: It starts by outlining the

experimental setup and evaluation metrics used to assess the e!cacy of

proposed solutions. The main focus is on the experimental outcomes from

the experiments about feature engineering and proposed models perfor-

mance against state-of-the-art models. It also discusses the explainability

of the models using techniques like Grad-CAM, Stage Analysis and Worst

Errors Investigation.

• Chapter 5: Conclusions: Summarizes the research findings by answer-

ing to to the research questions. It also discusses the implications, and

proposes future directions for the field of audio deepfake detection.

• Appendices: Include supplementary results and extended analyses that

support and enhance the understanding of the research findings.

9

Chapter 2

Background

This chapter lays the foundational knowledge required to understand the

various aspects of deepfake technology, particularly focusing on audio deep-

fakes. It explores the di”erent types of deepfakes, the methods employed

in their detection, and the critical audio features utilized in distinguishing

genuine from fabricated content. Additionally, it delves into the machine

learning models that are at the forefront of detecting and analyzing deep-

fakes. Each section is designed to progressively build an understanding of

the complex landscape of deepfake technology, addressing both its innova-

tive uses and the challenges it presents in digital media integrity.

2.1 Audio DeepFakes Typologies

Audio deepfake technology has evolved into various forms, each employ-

ing distinct methods to create or manipulate digital content. This section

categorizes DeepFakes into four primary typologies: Text-to-Speech (TTS),

Voice Conversion (VC), Partially Fake, and Replay Attack. Each typol-

ogy represents a unique approach to generate deceptive media with specific

techniques and implications. Therefore, each typology requires a tailored

detection strategy to identify and mitigate the risks associated with deep-

fake technology. In this work, we focus on the synthesis-based deepfakes.

2.1.1 Text-to-Speech (TTS)

Text-To-Speech (TTS) is a technology that converts written text into spoken

words. TTS systems have seen significant improvements in recent years,

especially with the advent of deep learning models, which have enabled

10

TTS systems to produce highly natural, expressive and emotionally rich

speech, narrowing the gap between synthetic and human speech.

Technological Evolution of TTS Systems

Text-to-speech systems have evolved significantly over the past few decades.

Initially, TTS systems relied on concatenative synthesis techniques [14],

where pre-recorded speech units (phonemes) were pieced together to form

full sentences. These early systems were often rigid and lacked natural

variability in speech, making them sound robotic and unnatural.

With the rise of statistical models like Hidden Markov Models (HMMs),

TTS systems moved towards parametric speech synthesis, which allowed

for more flexibility by generating speech through the manipulation of pa-

rameters like pitch, duration, and intensity. While this improved over con-

catenative approaches, the synthesized speech still struggled to reach the

naturalness of human speech due to the simplified representation of speech

parameters [15].

The most transformative shift occurred with the advent of deep learning-

based approaches. Models like WaveNet [16] (developed by Google Deep-

Mind) marked a breakthrough in speech synthesis by utilizing neural net-

works to directly model raw audio waveforms. WaveNet and similar ar-

chitectures, leverage large datasets and computational resources to model

intricate details of human speech, overcoming limitations of previous meth-

ods.

Currently, modern TTS systems are largely built on end-to-end deep

learning architectures, with attention mechanisms enabling the alignment

between text and speech and autoregressive models or parallel synthesis ap-

proaches improving the e!ciency and quality of speech generation. These

systems can learn from massive datasets of human speech, capturing nu-

anced patterns in pitch, intonation, and speech rhythm.

TTS System Architecture

Text-to-speech systems typically consist of three cooperating core modules,

each responsible for a specific aspect of the text-to-speech conversion process

[17].

• Text Processing Module: This is the first stage in a TTS system,

where the input text is processed and converted into a form that can be

11

understood by the speech synthesis system. In traditional TTS systems,

this module would often convert text into phonemes or linguistic features,

which represent the smallest units of sound in speech. The text process-

ing stage also includes linguistic analysis, such as part-of-speech tagging,

intonation modeling, and punctuation interpretation to generate a rich

linguistic representation of the input text. In modern TTS systems, deep

learning models handle these linguistic features more implicitly through

learned embeddings.

• Acoustic Model: After the text has been processed, the acoustic model

compute the characteristics of the speech, such as pitch, duration, and

intonation. In neural TTS systems, the acoustic model is often a deep

neural network, like in Tacotron or FastSpeech, which takes the linguistic

features from the text processing module and predicts the corresponding

acoustic features. These latter represent how the speech should sound,

leveraging tools like mel-spectrograms (representations of sound intensity

over time) and other spectral details of the speech signal. This step aims

to ensure the speech sounds natural and expressive, with proper pauses,

stress, and emotion.

• Vocoder: The vocoder is the final stage of the TTS system and is respon-

sible for generating the final speech waveform from the predicted acoustic

and linguistic features. While older vocoders were capable of processing

only acoustic features (e.g., mel-spectrogram), modern systems, such as

WaveNet and WaveGlow, can take as input both linguistic (phonemes)

and acoustic features, leveraging the flexibility o”ered by neural networks.

Vocoders are essential for achieving human-like naturalness in speech syn-

thesis, capturing nuances in sound such as background noise, breath, and

fine-grained temporal variations.

Over time, Text-to-Speech (TTS) systems have evolved from traditional

modular architectures to more integrated, end-to-end models. [17] In tra-

ditional systems, each component—text analysis, acoustic model, and

vocoder—is trained separately. While this modular approach provides flex-

ibility and control over individual parts, it also increases complexity in the

training process.

Partially end-to-end models, such as Tacotron 2 and Deep Voice 3,

simplify this process by merging the text analysis and acoustic modeling

stages into a single module, generating mel-spectrograms directly from text

12

or phonemes. The final waveform is then produced by a neural vocoder like

WaveNet, maintaining some modularity but reducing complexity compared

to traditional methods.

Fully end-to-end models like FastSpeech 2s and ClariNet represent

the latest advancements in TTS. These systems integrate all components

into a single model that converts input text directly into speech waveforms.

2.1.2 Voice Conversion (VC)

Voice Conversion (VC) refers to the process of transforming the voice of

a source speaker into a target speaker’s voice while preserving the original

linguistic content. VC systems can be used for several purposes:

• Voice Correction: This finds application for rehabilitation purposes,

such as helping individuals with speech disorders or injuries to commu-

nicate more e”ectively [18].

• Voice Impersonation: This focuses on altering the voice to mimic an-

other person, which can be used for entertainment, dubbing, or even

malicious purposes like fraud [18].

• Voice Emotion Change: This technique modifies the emotional tone or

mood of the speaker’s voice without altering the content or identity. It can

be used to change how a message is perceived, potentially distorting the

intent behind the speech. Changing the emotional content of a message

can indeed alter its semantic meaning [19].

• Scene Fake: While not properly focused on voice, scene fake alters the

acoustic environment or background of the audio, making it seem like

the recording was made in a di”erent location. While the speech itself

remains unchanged, the context of the audio is manipulated to create a

false impression of the setting [19].

2.1.3 Partially Fake Audios

Partially fake audios refer to manipulated recordings where only certain

portions of the audio are altered or artificially generated, while the rest re-

mains authentic. This manipulation can involve adding or modifying words

[20], phrases, or specific parts of a conversation to alter its meaning without

generating an entirely fake recording.

13

Detecting partially fake audio is particularly challenging because most of

the content is genuine, and only small portions are synthetic. This makes it

harder for detection algorithms to identify manipulations without advanced

analysis of speech patterns and subtle inconsistencies.

2.1.4 Replay Attack

Replay attacks, though not AI-generated, represent a prevalent form of au-

dio spoofing, where pre-recorded legitimate audio is used to deceive systems.

These attacks exploit the inability of speech recognition or speaker verifica-

tion systems to distinguish between live audio and pre-recorded voices.

Attack Procedure

Replay attacks typically involve two methods [18]:

• Simple Playback: The attacker records legitimate audio and then plays

it back to a system, convincing it that the voice is live.

• Cut and Paste: In this case, attackers take short segments of recorded

audio and stitch them together to create longer fake message or conver-

sation and reproducing specific content or responses.

The various types of audio deepfakes discussed in this section highlight the

diverse ways in which speech and sound can be manipulated using mod-

ern technology. From the complex transformation of voice characteristics

through TTS and voice conversion systems to the more subtle alterations

in emotion or environmental context, deepfake audio has a wide range of

applications and implications.

2.2 DeepFake Detection Methods

The detection of audio deepfakes has gained significant attention, with var-

ious methods being proposed to tackle this challenge. These techniques

can be broadly divided into three categories: signal processing-based meth-

ods, traditional machine learning approaches, and deep learning techniques.

While signal processing methods focus on analyzing specific audio signal

characteristics and often don’t rely on AI techniques, the main focus of this

thesis lies in machine learning and deep learning methods. Therefore, the

14

non-AI approaches will be briefly mentioned, and the core discussion will

revolve around the more advanced AI-driven detection methods.

2.2.1 Signal Processing Methods

Signal processing-based approaches are among the earlier techniques em-

ployed for detecting audio deepfakes. These methods rely on analyzing

distinct characteristics of the audio signal, such as spectral patterns, pitch

variations, or phase inconsistencies. By examining these features, signal

processing methods aim to detect anomalies that may reveal synthesized or

manipulated audio content [21].

2.2.2 Traditional Machine Learning Methods

Traditional machine learning (ML) methods focus on extracting handcrafted

features from the audio data and feeding them into classical classifiers to de-

tect anomalies associated with deepfakes. These approaches heavily rely on

feature engineering, where specific signal characteristics, such as MFCCs

(Mel-frequency cepstral coe!cients), zero-crossing rate, and Chroma fea-

tures, are used to represent the audio signal.

Given the extracted features, classical machine learning algorithms such

as Support Vector Machines (SVMs), Random Forests (RFs), and k-Nearest

Neighbors (k-NN) are applied to classify the audio samples as either genuine

or fake. These models are trained on labeled data, learning to distinguish

between real and synthetic audio based on predefined characteristics.

A key strength of traditional ML methods lies in their interpretabil-

ity and ability to handle smaller datasets, which makes them well-suited

for environments with limited data availability. However, these methods

are highly dependent on the quality and relevance of the chosen features,

making feature selection a critical step in the process. Furthermore, in

the most complex deepfake scenarios, where advanced synthesis models are

used, traditional ML methods may struggle to capture the subtle manipu-

lations introduced, thereby requiring more complex models and features.

Literature

Borrelli and colleagues [22] designed a model using Support Vector Machines

(SVM) alongside Random Forest (RF) to identify synthetic voices, utilizing

a novel audio feature referred to as Short-Term Long-Term (STLT). Their

15

models were trained on data from the 2019 Automatic Speaker Verification

(ASV) Spoof Challenge [23]. The results revealed that the SVM model

outperformed RF, achieving 71% better performance.

Kochare et al. [24] tested di”erent ML models, including SVM, Random

Forest, and k-Nearest Neighbors (k-NN), to detect synthetic audio on the

Fake or Real (FoR) dataset. The results showed that the SVM model out-

performed the other models with a validation accuracy of 85% and a test

accuracy of 67% using RMSE, MFCC, Chroma, and other spectral features.

Liu et al. [25] compared the robustness of SVM with a Convolutional

Neural Network (CNN) to detect fake stereo audio from real ones. The

comparison revealed that CNN is more robust than SVM when tested across

datasets, demonstrating the higher potential of CNN in detecting deepfake

audio.

2.2.3 Deep Learning Methods

Deep learning (DL) methods have become the dominant approach for de-

tecting audio deepfakes, o”ering greater flexibility and accuracy compared

to traditional machine learning methods. These approaches can be catego-

rized into partially automated and fully end-to-end methods.

Partially Automated Approaches

Partially automated approaches also referred to as hybrid methods, combine

handcrafted feature extraction with deep learning models. These methods

partially solve the problems of traditional ML methods by enhancing fea-

ture extraction with deep learning models. In these systems, features such

as MFCCs, Chroma, or spectrograms are first extracted using traditional

signal processing techniques. These extracted features are then fed into

deep learning models, typically Convolutional Neural Networks (CNNs) or

Recurrent Neural Networks (RNNs), to extract more complex patterns and

relationships from the data, finally crafting neural features that are fed

into a classifier for the final decision.

The key benefit of partially automated approaches is that they leverage

the strengths of both manual feature extraction and deep learning, o”ering

greater control over the features used while still benefiting from the deep

learning model’s capacity to learn complex patterns.

However, a drawback of these approaches is that they still rely on the

16

quality of manually extracted features, which may di”er in e”ectiveness

depending on the audio manipulation techniques used.

Literature

E.R. Bartusiak at al. [26] proposed a CNN model to detect deepfake audio

using only spectrogram as feature. Despite the high accuracy of 85.99% the

authors found that the model was not robust to generalize to new unseen

audio.

Whang et al. [27] proposed a new solution to extract features for syn-

thetic audio detection using a deep learning model. The authors extracted

layer-wise neuron activation patterns from a DL-based Speech Recognition

System. Exploring two di”erent approaches, called TKAN and ACN, the

authors found that the TKAN approach outperformed the ACN approach

in detecting synthetic audio, achieving a detection rate of 98.1% across syn-

thetic and voice conversion audio datasets.

Fully End-to-End Approaches

In fully end-to-end deep learning methods, the entire process, from raw

audio input to classification, is handled by a deep neural network. These

models learn to extract features autonomously from the audio data, elim-

inating eliminating the need for hand crafted feature engineering. This

makes end-to-end models more flexible and capable of capturing fine details

and patterns within the audio that traditional methods might overlook. Fur-

thermore, end-to-end models can adapt to di”erent types of audio deepfakes

without requiring extensive modifications to the feature extraction process.

One limitation, however, is that fully end-to-end models require large

amounts of labeled data for training, are computationally intensive and may

be more challenging to interpret as they act as black-box models.

2.3 Audio Features

This section delves into the key audio features used in deepfake detection,

providing their characteristics and interpretability.

17

Mel-frequency Cepstral Coe”cients (MFCC)

Mel-frequency Cepstral Coe!cients (MFCCs) are derived from the power

spectrum of an audio signal and represent the short-term power spectrum of

sound, specifically adapted to mimic the human auditory system’s percep-

tion of frequency. The MFCCs are extracted by applying a set of mel-scaled

filters to the signal, followed by a discrete cosine transform (DCT) to cap-

ture the important frequency components.

Interpretation MFCCs o”er a semantic decomposition of audio in terms

of tonal and timbral properties :

• Low MFCCs (MFCC 1-2) provide broad spectral energy and information

about the general shape of the sound. MFCC 1 is often related to the

loudness of the signal, while MFCC 2 can indicate the balance between

low and high frequencies.

• Mid MFCCs (MFCC 3-6) focus on the formant structure, providing more

information about vowel sounds and timbre or the timbral content of

audio.

• High MFCCs (MFCC 7 and above) capture high-frequency formants, har-

monics, and articulation details, representing the finer spectral compo-

nents of the audio signal.

One point to consider is that the exact boundaries between ”low,” ”mid,”

and ”high” MFCCs can vary depending on the specific application and the

total number of MFCCs being used.

Use in Audio Deepfake Detection MFCCs are highly e”ective for de-

tecting anomalies in both broad spectral content and subtle speech details.

Low MFCCs can help identify general discrepancies in pitch and loudness

between real and fake audio. For example, if a deepfake voice consistently

lacks the natural variations in overall energy or has an unusual balance of

low and high frequencies that’s atypical for human speech, these anomalies

would likely be reflected in the low MFCC range (MFCC 1-2).

Mid MFCCs are useful for detecting inconsistencies in the formant struc-

ture and timbral qualities of speech. For instance, if a synthetic voice pro-

duces vowel sounds with formant frequencies or transitions that don’t match

natural human speech patterns or if it exhibits unnatural timbral qualities,

18

these discrepancies would likely be evident in the mid MFCC range (MFCC

3-6).

High MFCCs capture finer artifacts that might arise from synthetic

voice generation techniques. For example, if a deepfake voice lacks nat-

ural transitions in consonant production or exhibits unnatural harmonics,

these discrepancies would likely appear in the high MFCC range (MFCC 7

and above).

Constant-Q Transform (CQT)

The Constant-Q Transform (CQT) is a time-frequency representation that

provides a logarithmic frequency resolution. Thanks to its dynamic win-

dow length, the CQT provides higher frequency resolution in low-frequency

regions and higher time resolution in high-frequency regions.

Interpretation CQT provides a clear breakdown of the audio in terms

of slow, broad sounds versus sharp, fast events :

• Low CQT values (lower frequency bands) represent lower frequencies and

capture slower audio events, like long, the low end of a speaker’s voice.

• High CQT values (upper frequency bands) capture higher frequencies and

are associated with sharper, faster events, such as consonant bursts in

speech.

The spacing between wave-like structures in a CQT plot corresponds to

rhythm and timing, o”ering insight into the pacing of speech or music.

Use in Audio Deepfake Detection CQT is useful for detecting rhythm

and frequency-related artifacts in deepfake audio. Low CQT values can help

identify unnatural modulations in speech or music’s low-frequency compo-

nents, such as a lack of natural variation in pitch. Meanwhile, high CQT

values capture the more intricate, high-frequency details that may reveal

synthesis imperfections, such as unnatural timing of fast speech events.

Mel-Spectrogram

A Mel-Spectrogram represents the frequency content of a signal over time,

but mapped to the mel scale, which mirrors the human ear’s perception of

pitch. It is widely used in speech and audio processing.

19

Interpretation The Mel-Spectrogram o”ers insight into:

• Low-frequency bands: Capture bass-heavy sounds or deep voice tones.

• High-frequency bands: Represent sharper sounds like consonants or high-

pitched notes.

The intensity of the spectrogram at di”erent frequencies and time points

indicates the energy distribution of the audio signal, with brighter regions

corresponding to higher energy levels.

Others

In addition to the Mel-Spectrogram, MFCC, and Chroma STFT, several

other audio features play a role in deepfake detection by capturing various

aspects of the audio signal.

Chroma STFT Chroma STFT (Short-Time Fourier Transform) captures

the energy distribution across 12 di”erent pitch classes (chroma), represent-

ing musical properties like harmony or chords. This feature is particularly

useful for music processing but can also reveal di”erences in tonal quality in

speech, which may be altered or artificially manipulated in deepfake audio.

Root Mean Square (RMS) RMS measures the energy or loudness of

the signal over time. It reflects the amplitude of the waveform, providing

insight into how the intensity of the audio changes. Variations in RMS can

be used to detect inconsistencies in loudness patterns often introduced by

synthetic audio generation techniques.

Spectral Rollo! This feature represents the frequency below which a

certain percentage (typically 85-90%) of the total spectral energy is concen-

trated. It helps distinguish between harmonic and non-harmonic content,

which can be useful in identifying whether audio has been artificially gen-

erated, as deepfake audio may exhibit unnatural rollo” characteristics.

Zero Crossing Rate (ZCR) ZCR measures the rate at which the signal

changes sign (crosses the zero axis). It is particularly useful for distinguish-

ing between voiced and unvoiced segments in speech. High ZCR values

typically indicate noise or sharp transients, and this feature can reveal un-

natural signal fluctuations in synthetic audio.

20

Spectral Centroid This feature indicates where the center of mass of the

spectrum is located, e”ectively representing the ”brightness” of the sound.

In human speech, this correlates with the timbre and articulation. Deepfake

audio may produce anomalies in the spectral centroid due to imperfect

synthesis of the sound’s timbral characteristics.

Spectral Bandwidth The spectral bandwidth quantifies the range of

frequencies present in the audio signal. It helps in analyzing the spread of

frequencies in the signal and can highlight issues with how synthetic audio

handles harmonic structures and the overall sound quality. A mismatch in

the expected bandwidth can signal potential deepfake audio artifacts.

It is important to highlight that features such asMFCC, CQT,Mel-Spectrogram,

and Chroma STFT provide multiple values per audio frame, resulting in a

rich representation of frequency content over time. In contrast, other fea-

tures like RMS, Spectral Rollo”, Zero Crossing Rate, Spectral Centroid, and

Spectral Bandwidth produce a single value per frame. To visualize these

features in image-based models, preprocessing steps are often required, as

discussed in Section 3.2.2.

2.4 Machine Learning Models

In this section, we explore various models employed in our research, cate-

gorized into traditional machine learning models and deep learning models.

2.4.1 Traditional Models

The traditional models used in this project are Logistic Regression (LR),

Support Vector Machines (SVM), Random Forest (RF), eXtreme Gradient

Boosting (XGBoost) and CatBoost.

Logistic Regression (LR)

Logistic Regression (LR) is a fundamental statistical method used for bi-

nary classification tasks in machine learning. It models the probability

that a given input x belongs to a particular category. LR is favored for

its simplicity and interpretability, making it a common choice for problems

21

where understanding the influence of predictor variables is as important as

prediction accuracy.

Conceptual Understanding At its core, Logistic Regression estimates

the probability P (Y = 1|x) that the dependent variable Y equals 1 (the

positive class), given the independent variables x. Unlike linear regression,

which models the output as a linear combination of inputs, LR applies the

logistic function to ensure the output probabilities lie between 0 and 1.

Mathematical Formulation The logistic function, also known as the

sigmoid function, is defined as:

P (Y = 1|x) = ω(z) =
1

1 + e→z

where

z = ε0 + ε1x1 + ε2x2 + · · ·+ εnxn

Here, ε0 is the intercept, εi are the coe!cients for the independent variables

xi, and n is the number of predictors. The coe!cients are estimated using

maximum likelihood estimation (MLE), aiming to find the parameter values

that maximize the likelihood of observing the given data.

Assumptions Underlying Logistic Regression For LR to produce

reliable results, several assumptions need to be satisfied:

• Linearity in the Log-Odds: The log-odds of the outcome are a linear

combination of the independent variables.

• Independent and Identically Distributed Data: The training data

is assumed to be independently drawn from the distribution.

• Lack of Multicollinearity: Independent variables are not highly cor-

related with each other.

Support Vector Machines (SVM)

Support Vector Machines (SVM) are powerful supervised learning models

used for classification and regression tasks in machine learning. They are

particularly e”ective in high-dimensional spaces and are known for their

22

ability to handle datasets where the number of features exceeds the number

of samples. Indeed, SVMs aim to find the optimal hyperplane that maxi-

mally separates data points of di”erent classes. This basically corresponds

to regularization.

(a). Candidate Hyperplanes (b). Optimal Hyperplane

Figure 2.1: Support Vector Machines Hyperplane Selection

Conceptual Understanding The fundamental idea behind SVM is to

find a hyperplane in an n-dimensional space (n being the number of features)

that distinctly classifies the data points. The optimal hyperplane is the

one that has the maximum margin, which is the largest distance between

data points of both classes. Data points closest to the hyperplane are called

support vectors, and they are critical in defining the position and orientation

of the hyperplane.

Mathematical Formulation Given a training dataset {(xi, yi)}mi=1, where

xi → Rn and yi → {↑1,+1}, the SVM optimization problem can be formu-

lated as:

min
w,b

1

2
↓w↓2

subject to:





(w↑xi + b) ↔ 1, if yi = +1

(w↑xi + b) ↗ ↑1, if yi = ↑1
↘i = 1, . . . ,m

Here, w is the weight vector perpendicular to the hyperplane, b is the bias

term, and ↓w↓ denotes the Euclidean norm of w. This formulation seeks

to maximize the margin 1/↓w↓ while ensuring all data points are correctly

classified.

23

To handle training sets that are not linearly separable instead of rejecting

solutions that do not satisfy all the constraints, we penalize them by adding

an extra cost to the objective function.

Consider the decision function zi = w↑xi + b:

• If yi = +1 and zi < 1, the sample is within the margin or misclassified;

it is penalized by an amount 1↑ zi.

• If yi = ↑1 and zi > ↑1, the sample is within the margin or misclassified;

it is penalized by an amount 1 + zi.

This penalization scheme corresponds to the use of the hinge loss func-

tion, defined as:

h(yi, zi) = max{1↑ yizi, 0}

The soft-margin SVM optimization problem becomes:

min
w,b

1

m

m∑

i=1

h(yi, zi) + ϑ
↓w↓2

2

where ϑ is the regularization parameter that controls the trade-o” be-

tween maximizing the margin (↓w↓2
2) and minimizing the classification error

(1
m

∑
m

i=1 h(yi, zi)).

The Kernel Trick When data is not linearly separable in the original

feature space, SVM uses the kernel trick to implicitly map input features

into a higher-dimensional space where a linear separator might exist. The

kernel function K(xi,xj) computes the inner product of the images of the

data points in the feature space without explicitly performing the transfor-

mation:

K(xi,xj) = ϖ(xi)
↑
ϖ(xj)

24

(a). Original Space (b). Mapped Space

(c). Decision Boundary

Figure 2.2: Illustration of the Kernel Trick in SVM

In other words, the kernel function, working in the original feature space,

returns a scalar whose value is the same as the inner product of the pro-

jection of the data points in the higher-dimensional space. Common kernel

functions include:

• Linear Kernel: K(xi,xj) = x↑
i
xj

• Polynomial Kernel: K(xi,xj) = (x↑
i
xj + r)d

• Radial Basis Function (RBF) Kernel: K(xi,xj) = exp(↑↓xi↑xj↓2)

• Sigmoid Kernel: K(xi,xj) = tanh(x↑
i
xj + r)

The kernel trick allows SVMs to build non-linear classifiers by leveraging

these kernel functions to capture complex relationships in the data.

Assumptions Underlying Support Vector Machines For SVMs to

perform e”ectively, several assumptions are considered:

• Linear Separability: Assumes that the classes are linearly separable in

the original feature space or can be mapped to a linearly separable space

using the kernel trick.

25

• Independent and Identically Distributed Data: The training data

is assumed to be independently drawn from the distribution.

• Appropriate Kernel Selection: Assumes that a suitable kernel func-

tion can capture the underlying data patterns.

• Support Vector Representativeness: The support vectors are repre-

sentative of the entire dataset and are critical for defining the decision

boundary.

Random Forest

Random Forest is an ensemble learning method used for classification and

regression tasks. It operates by constructing a multitude of decision trees

during training time and outputting the class that is the mode of the classes

(classification) or mean prediction (regression) of the individual trees. Ran-

dom Forests are known for their ability to handle large datasets with higher

dimensionality and for reducing overfitting by averaging multiple decision

trees.

Figure 2.3: Random Forest Visualization

Conceptual Understanding The fundamental idea behind Random For-

est is to combine the predictions of several base estimators built with a

certain degree of randomness to improve the generalizability of the model.

Each tree in the forest is built from a bootstrap sample of the data, and at

26

each node, a random subset of features is selected for splitting. This ran-

domness helps in creating a diverse set of trees, which, when aggregated,

produce a more robust and accurate model.

Mathematical Formulation Given a training dataset {(xi, yi)}Ni=1, Ran-

dom Forest constructs M decision trees {Tm}Mm=1. The prediction ŷ for a

new input x is given by:

For classification (majority voting):

ŷ = mode{Tm(x) | m = 1, 2, . . . ,M}

For regression (average prediction):

ŷ =
1

M

M∑

m=1

Tm(x)

Each tree Tm at each split considers a random subset of k features from the

total d features. The parameter k is typically set to
≃
d for classification

and d/3 for regression tasks.

Assumptions Underlying Random Forest Random Forest makes just

one assumption:

• Su”cient Diversity Among Trees: The individual trees are su!-

ciently diverse due to random feature selection and bootstrapping.

XGBoost

XGBoost (eXtreme Gradient Boosting) is a scalable and e!cient implemen-

tation of gradient boosting machines, designed for speed and performance.

It was developed by Chen and Guestrin [28] and has become a popular

choice due to its speed, accuracy, and flexibility.

Conceptual Understanding XGBoost builds an ensemble of decision

trees sequentially, where each new tree aims to correct the errors of the

previous trees. It employs the gradient boosting framework, optimizing a

di”erentiable loss function by adding weak learners (decision trees) in a

stage-wise fashion.

27

Mathematical Formulation Given a training dataset {(xi, yi)}Ni=1, the

model predicts the output ŷi by summing the predictions of K regression

trees:

ŷi =
K∑

k=1

fk(xi), fk → F

where F is the space of regression trees. The objective function to be

minimized is:

L =
N∑

i=1

l(yi, ŷi) +
K∑

k=1

#(fk)

where l(yi, ŷi) is a di”erentiable convex loss function (e.g., squared error for

regression), and #(fk) is a regularization term penalizing the complexity of

the model, typically defined as:

#(f) = ϱT +
1

2
ϑ↓ς↓2

Here:

• T is the number of leaves in the tree.

• ς represents the leaf weights.

• ϱ and ϑ are regularization parameters controlling the trade-o” between

model complexity and training loss.

By adding new trees that predict the residuals (errors) of the previous

ensemble, XGBoost minimizes the objective function using second-order

Taylor approximation, which improves optimization speed and accuracy.

Assumptions Underlying XGBoost XGBoost operates under several

assumptions:

• Additive Modeling: Assumes that the underlying relationship can be

modeled as an additive combination of decision trees.

• Independence of Residuals: Assumes that the errors corrected by each

subsequent tree are independent.

28

• Su”cient Data: Requires enough data to accurately capture the un-

derlying patterns without overfitting.

CatBoost

CatBoost (Categorical Boosting) is a gradient boosting algorithm devel-

oped by Yandex [29] [30], designed to handle categorical features e”ectively.

CatBoost outperforms many existing algorithms by reducing overfitting and

providing state-of-the-art results with minimal hyperparameter tuning.

Figure 2.4: CatBoost Algorithm - Sourced from [1]

Conceptual Understanding CatBoost is based on the gradient boost-

ing framework but introduces innovative techniques to handle categorical

features and reduce overfitting:

• Ordered Target Statistics: For each categorical feature, CatBoost

computes target statistics (e.g., mean target value) in an ordered manner

to prevent target leakage. This means that for each data point, the statis-

tics are calculated only using data preceding it in a given permutation.

This allows CatBoost to handle categorical features e!ciently without

the need for extensive preprocessing like one-hot encoding.

• Ordered Boosting: Instead of using the same dataset for both learn-

ing the model and computing the residuals (gradients), CatBoost uses

permutations of the dataset to create training sets that avoid using the

29

current data point when computing its own residuals. This technique

reduces overfitting and improves model generalization.

Mathematical Formulation CatBoost builds an ensemble of decision

trees in a stage-wise fashion, similar to other gradient boosting methods.

At each iteration t, it aims to minimize a loss function L by adding a new

tree ft(x) to the ensemble:

Ft(x) = Ft→1(x) + ϱtft(x)

Here, Ft(x) is the ensemble model at iteration t, and ϱt is the learning

rate. The main innovation lies in how CatBoost calculates the gradients

and handles categorical features, as discussed above.

Assumptions Underlying CatBoost CatBoost makes several assump-

tions for e”ective performance:

• Dependence Structure: Assumes that the data has a certain depen-

dence structure that can be captured by the ordered boosting and target

statistics methods.

• Su”cient Data: Requires a su!cient amount of data to accurately

compute ordered target statistics without introducing significant noise.

• Independent and Identically Distributed Data: The training data

is assumed to be independently drawn from the distribution.

2.4.2 Deep Learning Models

The deep learning models used in this project are Convolutional Neural

Networks (CNNs) and Multilayer Perceptrons (MLPs).

Multilayer Perceptron (MLP)

Multilayer Perceptron (MLP) is a class of feedforward artificial neural net-

works (ANN) that consists of multiple layers of nodes in a directed graph,

with each layer fully connected to the next one.

30

Figure 2.5: Multilayer Perceptron Architecture - Sourced from [2]

Conceptual Understanding An MLP comprises an input layer, one or

more hidden layers, and an output layer. Each layer is made up of nodes

(neurons) that take as input the weighted sum of the outputs from the

previous layer, apply an activation function, and pass the result to the next

layer. In this way, the network is capable of approximating any continuous

function given su!cient data and appropriate network architecture.

Mathematical Formulation Given an input vector x → Rn, the MLP

computes an output ŷ through a series of transformations:

1. Forward Propagation:

For each layer l = 1, 2, . . . , L:

z(l) = W(l)a(l→1) + b(l)

a(l) = ϖ
(l)(z(l))

Where:

• W(l) is the weight matrix connecting layer (l ↑ 1) to layer l.

• b(l) is the bias vector for layer l.

• a(l) is the activation of layer l.

• ϖ
(l) is the activation function for layer l (e.g., sigmoid, ReLU, tanh).

31

• For the input layer, a(0) = x.

The output of the network is ŷ = a(L).

2. Loss Function:

A loss function L(y, ŷ) measures the discrepancy between the true out-

puts y and the predicted outputs ŷ. Common loss functions include

mean squared error (MSE) for regression and cross-entropy loss for clas-

sification.

3. Backpropagation and Weight Updates:

The network’s weights and biases are updated using gradient descent

optimization algorithms to minimize the loss function. The gradients

are computed using backpropagation:

For each parameter φ → {W(l)
,b(l)} :

φ ⇐ φ ↑ ↼
↽L

↽φ

Where ↼ is the learning rate.

Assumptions Underlying MLP For MLPs to perform e”ectively, sev-

eral assumptions are made:

• Su”cient Data: Assumes access to a large and representative dataset

for training to capture the underlying patterns.

• Appropriate Network Architecture: The architecture (number of

layers, number of neurons per layer, activation functions) must be suitable

for the complexity of the task.

• Independent and Identically Distributed Data: The training data

is assumed to be independently drawn from the distribution.

• Stationarity: Assumes that the underlying data distribution does not

change over time.

32

Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs), firstly introduced by Fukushima et

al. [31] are a class of deep learning models specifically designed to process

data with a grid-like topology, such as images. CNNs are characterized by

their use of convolutional layers that apply filters to local regions of the in-

put, capturing spatial hierarchies and patterns and producing feature maps.

Pooling layers are used to reduce the dimensionality of the feature maps,

and fully connected layers interpret the extracted features for classification

or regression tasks.

Figure 2.6: Convolutional Neural Network Architecture - Sourced from [3]

Conceptual Understanding The main mathematical operation in CNNs

is the convolution, which involves sliding a small matrix of weights, known

as a filter or kernel, over the input data. At each position, the filter performs

element-wise multiplication between its weights and the corresponding input

values, summing the results to produce a single output value. This process’

output is a feature map that highlights the presence of certain features in

the input.

During training, the CNN learns how to adjust the weights of these filters

in a way that they become sensitive to specific patterns important for the

task at hand, such as edges, textures, or shapes in an image. Because the

same filter is applied across all regions of the input (a concept called weight

sharing), the network can detect these features regardless of their position

in the image.

Once trained, the CNN has filters that activate strongly when their

33

learned features are present in the input. This means the network e”ectively

highlights the regions of the input that are most relevant for classification.

By stacking multiple convolutional layers, the CNN can learn a hierarchy

of features, with earlier layers detecting simple patterns and deeper layers

combining them into more complex representations like objects or faces.

In essence, CNNs are capable of automatically learning to detect impor-

tant features in the input data, adjusting filter weights during training to

focus on meaningful patterns and building hierarchical representations that

enable accurate classification or recognition tasks.

Mathematical Formulation CNNs follow a series of operations to pro-

cess input data and learn the underlying patterns:

1. Convolution Operation:

For an input image (or feature map) X → RH↔W↔Cin , where H is the

height, W is the width, and Cin is the number of input channels, the

convolution operation with a filter (kernel) K → RkH↔kW↔Cin produces an

output feature map Y → RH
→↔W

→↔Cout :

Y
(c)
i,j

=
kH∑

m=1

kW∑

n=1

Cin∑

c→=1

K
(c,c→)
m,n

X
(c→)
i+m→1,j+n→1

where:

• Y
(c)
i,j

is the output at position (i, j) for output channel c.

• K
(c,c→)
m,n is the filter weight at position (m,n) connecting input channel

c
↗ to output channel c.

• The output dimensions H ↗ and W
↗ depend on the input size, filter size,

padding, and stride.

2. Activation Function:

After convolution, an activation function ϖ is applied element-wise:

A = ϖ(Y)

Common activation functions include:

34

• ReLU (Rectified Linear Unit): ϖ(z) = max(0, z)

• Sigmoid: ϖ(z) = 1
1+e↑z

• Tanh: ϖ(z) = tanh(z)

3. Pooling Operation:

Pooling layers reduce the spatial dimensions by applying a pooling func-

tion over non-overlapping or overlapping regions:

P
(c)
i,j

= pool
(
A

(c)
r,s

| r → Ri, s → Rj

)

where pool could be:

• Max Pooling: Takes the maximum value within the region.

• Average Pooling: Computes the average value within the region.

4. Fully Connected Layers:

The output of the convolutional and pooling layers is flattened into a

vector and passed through one or more fully connected layers (Section

2.4.2).

5. Loss Function and Optimization:

The network’s parameters are learned by minimizing a loss function

L(y, ŷ) using optimization algorithms like stochastic gradient descent

(SGD) or Adam. Backpropagation is used to compute gradients with

respect to the parameters.

Assumptions Underlying CNN CNNs are based on several key as-

sumptions:

• Local Connectivity: Assumes that local pixels are more related than

distant pixels, allowing the use of small filters to capture local patterns.

• Shared Weights (Stationarity): The same filter (set of weights) is

applied across the entire input, assuming that the features are transla-

tionally invariant.

• Su”cient Data: Requires large amounts of labeled data to e”ectively

learn complex patterns.

35

Chapter 3

Methods and Experiments

This chapter details the methods and experiments conducted in the audio

deepfake detection research. The chapter is divided into three main sections:

Dataset, Feature Engineering, and Models.

3.1 Dataset

A deep understanding of the dataset is fundamental as it forms the founda-

tion of the machine learning models developed for this research. The section

is divided into two main parts: the selection of the dataset and the prepro-

cessing steps applied to it. The selection part elaborates on the importance

of choosing the right dataset, highlights the strengths and limitations of

the chosen dataset, and briefly summarizes other datasets used in similar

research. The preprocessing part describes the transformations performed

on the data, which are essential for ensuring the quality and consistency of

the dataset.

3.1.1 Dataset Selection

Selecting the appropriate dataset is critical for developing robust audio

deepfake detection models. Four main factors contribute to the e”ectiveness

of a dataset in this domain:

• Diverse Speaker Voices: A comprehensive dataset should include a wide

range of speaker voices to ensure the model can generalize across di”erent

vocal characteristics. This diversity includes variations in accent, tone,

pitch, and speaking style.

36

• High-Quality TTS Algorithms: it is essential to include samples generated

by state-of-the-art Text-to-Speech (TTS) algorithms. This ensures that

the model is trained to detect the latest synthetic speech technologies,

which are often more sophisticated and harder to identify. Including

diverse TTS algorithms is fundamental to training a robust model that

can detect a wide range of deepfake techniques.

• Number of Utterances: The dataset should contain a su!cient number

of utterances to train a deep learning model e”ectively. A larger dataset

allows the model to learn more complex patterns and generalize to unseen

data.

• Gender Balance: To avoid gender bias and ensure the model performs

equally well on male and female voices, the dataset should have a balanced

representation of genders.

The Fake or Real (FoR) dataset proposed by Reimao et al. [32] aligns well

with the outlined criteria. It includes 140 di”erent real speakers and 33

synthetic voices generated by seven state-of-the-art commercial and open-

source TTS systems. The dataset comprises over 84,000 fake utterances

and 111,000 real utterances, both of which are also available in a gender-

balanced version. A notable feature of the FoR dataset is its test set, which

contains audio samples from a TTS algorithm not present in the training

set, thus enabling the evaluation of the model’s generalization capabilities.

Two limitations of the dataset are the presence of only TTS-generated

fake utterances and the lack of noise and environmental variations. How-

ever, the latter can be addressed by augmenting the dataset with additional

samples containing background noise and other environmental factors. The

former is not a problem for this research, as the focus is on detecting TTS-

generated deepfake audio.

Furthermore, the dataset includes several versions. The original dataset,

“for-original,” contains the raw audio files. “For-norm” is the normalized

version mainly used in this project, with preprocessing steps detailed in the

next section. The “for-2seconds” version truncates and balances the data,

resulting in 17,870 utterances. Additionally, to simulate real-world attacks,

the re-recorded version, “for-rerec,” mimics synthetic speech generated on

one device and recorded on another.

Several other datasets are widely used in the field of audio deepfake

detection:

37

• ASVspoof Datasets: The ASVspoof challenge series has produced sev-

eral datasets focused on protecting automatic speaker verification sys-

tems from spoofing attacks [33] and [23]. The ASVspoof 2021 dataset

also includes audio deepfake samples, which consider data compression

e”ects [34].

• ADD Datasets: The ADD (Audio Deepfake Detection) challenge series

has released two datasets, ADD 2022 [35] and ADD 2023 [36], aiming at

covering many real-life and challenging scenarios not covered by existing

datasets. Specifically, the ADD 2023 dataset focused on localizing the

manipulated intervals in a partially fake utterance and pinpointing the

generation source for any fake audio [19].

• In-the-Wild Dataset: This dataset was proposed by Muller et al. [37]

to test the generalization capabilities of audio deepfake detection mod-

els. The authors collected deepfake audio recordings of celebrities and

politicians and provided them with their real counterparts.

3.1.2 Dataset Preprocessing

The transformations applied can significantly impact the model’s perfor-

mance by enhancing the quality and consistency of the data. The ”for-

norm” version of the FoR dataset underwent several preprocessing steps

detailed in the paper by Reimao et al. [32] and briefly summarized below:

• Format Conversion: The audio files were converted to the WAV format,

preferred for machine learning applications.

• Volume Normalization: The audio files were normalized to 0dBFS to

avoid volume to be a distinguishing factor.

• Resampling: The audio files were resampled to 16 kHz to ensure unifor-

mity across the dataset.

• Channel Selection: The synthetic audio was mono and the real audio was

stereo, therefore the synthetic audio was converted to mono to avoid the

model learning to distinguish between the two.

• Silence Removal: Silence segments at the beginning and end of each audio

file were removed.

38

• Gender and Class Balancing: The two classes were balanced in terms of

gender and number of samples, resulting into a reduction of the dataset

size to 69,400 utterances.

3.2 Feature Engineering

Feature engineering is fundamental in developing machine learning mod-

els. In audio deepfake detection, the aim is to convert raw audio data into

a format that mathematical models can e”ectively process. This section

outlines the feature engineering process, starting with the preliminary deci-

sions regarding the extraction hyperparameters. Subsequently, the techni-

cal choices for each feature type are documented, including the number of

features extracted and any mathematical transformations applied.

In this research, both traditional machine learning models and CNN

deep learning models are used, requiring di”erent input data formats: 1D

for traditional models and 2D/3D for CNNs. Each feature type is analyzed

in two versions: one where features are used “raw” as input to classifiers,

and another where features are processed through a CNN, and the resulting

neural features are used as input. Due to these di”erences, both the extrac-

tion hyperparameters selection and the practical extraction details must be

discussed separately for the two versions. Therefore, in the following sec-

tions, there will be a distinction between the raw features approach and the

neural features approach.

3.2.1 Feature Extraction Hyperparameters

Extracting high-quality features from audio data involves several consid-

erations, such as the extraction interval, window length, and hop length.

The complexity arises from the interdependence of these choices; optimal

settings for one feature type may not be suitable for another. Additionally,

di”erent models may respond di”erently to these configurations, making

the search space for possible solutions enormous. Given the impracticality

of exploring all combinations, a greedy approach was adopted to e!ciently

identify the best settings, trying to minimize compromises at the same time.

To achieve this, an experimental approach was used to select intervals, fea-

ture types, and hop and window lengths based on the model’s performance.

The approach, illustrated by algorithm 1 consists of three phases:

39

Algorithm 1: Feature Engineering Process
Data: Audio dataset, list of classifiers C, list of feature types F , list of

extraction intervals I, list of hop-window length combinations H
Result: Optimal feature extraction settings

Phase 1: Evaluate All CFI Combinations

foreach classifier c → C do

foreach feature type f → F do

foreach interval i → I do

Evaluate classifier c with feature type f and interval i;
Store performance metrics on train, test, and val set;

end

end

end

Phase 2: Select Best Feature Types and Intervals

Select the top-performing combinations of feature types Fbest, intervals
Ibest based on performance metrics and two classifiers Cbest;

Phase 3: Investigate Hop and Window Length E!ect

foreach classsifier c → Cbest do

foreach feature type f → Fbest do

foreach interval i → Ibest do

foreach hop-window combination h → H do

Evaluate classifier c with feature type f , interval i, and
hop-window combination h;

Store performance metrics on train, test and val set;

end

end

end

end

Select the optimal settings based on final performance metrics;

1. Evaluate All Possible CFI Combinations: This phase involves testing all

combinations of classifiers (C), feature types (F), and extraction intervals

(I).

2. Select the Best Feature Types and Intervals: The best performing combi-

nations of feature types and intervals are chosen for further investigation.

3. Investigate the E”ect of Hop and Window Length: The impact of di”er-

ent hop and window lengths is analyzed on the previously selected best

combinations.

The subsequent paragraphs detail the hyperparameters considered for the

feature engineering experiments.

40

Raw Features Approach

The traditional ML experiments considered the following hyperparameters:

• 4 classifiers: Random Forest, Support Vector Machine, CatBoost and

Logistic Regression.

• 2 hop lengths (wl/4, wl/2) and 5 window lengths (256, 512, 1024, 2048,

4096), resulting in 10 hop-window combinations.

• 9 feature types (mel spec, mfcc, cqt, chroma stft, spectral centroid, spec-

tral bandwidth, spectral rollo”, zero crossing rate, rms).

• 4 extraction intervals (0.5s, 1s, 1.5s, 2s).

Neural Features Approach

The DL experiments were conducted slightly di”erently according to the

CNN model. In the case of MobileNetV3 the setup was similar to the ML

models, with fewer feature types and intervals due to the model’s complex-

ity:

• 4 classifiers: Random Forest, Support Vector Machine, CatBoost and

XGBoost.

• 2 hop lengths (wl/4, wl/2) and 5 window lengths (256, 512, 1024, 2048,

4096), resulting in ten hop-window combinations.

• 6 feature types (mfcc, cqt, chroma stft, rms, spectral rollo”, zero crossing rate).

• 4 extraction intervals (1s, 2s).

For VGG16, only the Random Forest classifier was used, as it outperformed

others in prior experiments. Various VGG16 layers were tested as feature

extractors: specifically the last convolutional layer, the penultimate, and

the antepenultimate, with pooling incorporated in VGG16. Consequently,

the hyperparameters considered for the VGG16 experiments were:

• 1 classifiers: Random Forest.

• 3 layers of VGG16 (layer 43, layer 33 and layer 23).

• 2 hop lengths (wl/4, wl/2) and 5 window lengths (256, 512, 1024, 2048,

4096), resulting in ten hop-window combinations.

41

Type Model Classifiers Layers Hparams

CNN MNETv3 RF, SVM, CatBoost, XGBoost last table 3.2
VGG16 RF 43, 33, 23 table 3.2

ML - RF - table 3.2
- SVM - table 3.2
- CatBoost - table 3.2
- LR - table 3.2

Table 3.1: Feature Engineering Hyperparameters - Part 1

Type Features Intervals (s) Win Lengths
(WL)

Hop Lengths

CNN MFCC, CQT,
Chroma, RMS,
SR, ZCR

1, 2 256, 512, 1024,
2048, 4096

WL/4, WL/2

ML Mel, MFCC,
CQT, Chroma,
SC, SB, SR,
ZCR, RMS

0.5, 1, 1.5, 2 256, 512, 1024,
2048, 4096

WL/4, WL/2

Table 3.2: Feature Engineering Hyperparameters - Part 2

• 6 feature types (mfcc, cqt, chroma stft, rms, spectral rollo”, zero crossing rate).

• 4 extraction intervals (1s, 2s).

A summary of the hyperparameters considered for the feature engineering

experiments is provided in tables 3.1 and 3.2.

3.2.2 Extraction Details

The extraction process di”ers based not only on whether the features are

used in their raw form or processed through a CNN, but also on the feature

type within the same model category. Specifically, it is possible to di”er-

entiate between features that produce multiple values per time frame (e.g.,

MFCC, CQT, Chroma) and those that produce a single value per frame

(e.g., RMS, ZCR).

Raw Features Approach

Raw features that generate multiple values per time frame include Mel Spec-

trogram, MFCC, CQT, and Chroma. For these features, the number of

extracted values per time frame is user-specified. The extraction interval,

42

window length, and hop length determine the number of time frames. For

example, to extract 20 MFCC features from a 2-second interval with a win-

dow length of 1024, a hop length of 256, and a sampling rate of 16 kHz, we

would have:

2s⇒16kHz = 32000 samples 32000 samples/256 hop length = 125 frames

These frames are made up of 1024 samples each. Each frame is trans-

formed into 20 MFCC features, resulting in a 20 ⇒ 125 matrix for the 2-

second interval. To convert this into a 1D input for classifiers, the matrix is

averaged along the time axis, yielding a 20-dimensional vector. This process

is similarly applied to other feature types. While this method loses time

information, it preserves frequency information.

Features that produce a single value per frame include Spectral Cen-

troid, Spectral Bandwidth, Spectral Rollo”, Zero Crossing Rate, and RMS.

Averaging these features over time would result in a single value per inter-

val. To avoid this, multiple values were retained for each interval by not

averaging along the time axis. The number of features may be controlled by

adjusting the window length and hop length for a given interval; the larger

the hop length, the fewer the extracted features. This approach retains time

information but provides less frequency information.

Notably, the feature engineering experiments on raw features were based

on a subset of the data. This latter was made up of 18000 training audio

files, 3600 validation audio, and the same amount of test audio. The subset

was reduced to 3000, 750, and 750 audio files for the hop and window length

experiments. In all cases, the data points are evenly distributed across

fake and real classes, using undersampling and oversampling techniques to

address possible class imbalances introduced by the di”erent durations of

fake and real audio files.

The scikit-learn library was used for the models, with the default

parameters for each classifier while the librosa and torchaudio libraries

were used for the feature extraction.

Neural Features Approach

In the neural features approach, the feature representation was transformed

from a 1D vector to a 2D image, where the x-axis represented time frames,

and the y-axis displayed feature values. This transformation balanced com-

putational complexity and information preservation by extending the fea-

tures to an image size of 112⇒ 112 pixels.

43

For features that produced a single value per frame, the 2D extension

was achieved by stacking these values along the y-axis to reach 112 values.

For features with multiple values per frame, the process was more complex.

MFCC could directly generate 112 values, and Chroma was automatically

extended to 112 using the Librosa function. However, CQT, which was

limited to 84 values, was extended to 112 by padding with zeros.

Further processing was required to fit the input shape needed by Con-

volutional Neural Networks (CNNs), which is 3⇒ 224⇒ 224. The PyTorch

[38] transforms.Resize function was used to resize the image to 224⇒224

pixels through interpolation. To extend to 3 channels, two approaches were

considered: stacking the 2D image three times along the channel axis, or

creating a CNN 3D Mapper that returned three RGB values for each pixel.

The latter approach, which yielded optimal results, is detailed in Section

3.4.2.

Additionally, pixel values were transformed to the standard image range

[0, 255]. Since some features produced negative values, a min-max scaling

was applied, followed by multiplication by 255 and conversion to integers.

The scaling parameters were calculated on the training set and applied to

other sets to prevent data leakage. To enhance robustness against outliers,

the minimum and maximum values were computed using the 5th and 95th

percentiles as empirically tested optimal values.

1 # Compute the 5th and 95th percentiles

2 Q1 = np.percentile(train_data , 5)

3 Q3 = np.percentile(train_data , 95)

4 IQR = Q3 - Q1

5

6 # Compute the min and max values

7 data_min = Q1 - 1.5 * IQR

8 data_max = Q3 + 1.5 * IQR

Listing 3.1: IQR based Min-Max Scaling for images

The last step was to prepare the data for the CNN pre-trained mod-

els. All the necessary transformations were applied with the ready-to-use

PyTorch transform functions for the specific CNN model, VGG16_Weights.

IMAGENET1K_V1.transforms 1 for VGG16 and MobileNet_V3_Small_Weights.

IMAGENET1K_V1.transforms 2 for MobileNetV3.

1
https://pytorch.org/vision/main/models/generated/torchvision.models.

vgg16.html

2
https://pytorch.org/vision/main/models/generated/torchvision.models.

mobilenet_v3_small.html

44

VGG16_Weights.IMAGENET1K_V1.transforms
VGG16_Weights.IMAGENET1K_V1.transforms
MobileNet_V3_Small_Weights.IMAGENET1K_V1.transforms
MobileNet_V3_Small_Weights.IMAGENET1K_V1.transforms
https://pytorch.org/vision/main/models/generated/torchvision.models.vgg16.html
https://pytorch.org/vision/main/models/generated/torchvision.models.vgg16.html
https://pytorch.org/vision/main/models/generated/torchvision.models.mobilenet_v3_small.html
https://pytorch.org/vision/main/models/generated/torchvision.models.mobilenet_v3_small.html

1D Feature Vector Transform to 112x112 Image

Resize to 224x224Convert to 3 Channels

Scale to [0, 255] Apply CNN Transformations

Figure 3.1: Neural Features Extraction Process

The entire process is summarized in Figure 3.1

Due to the increased computational complexity of deep learning mod-

els, experiments with neural features used a smaller data subset consisting

of 3000 training audio files, 750 validation audio files, and 750 test audio

files. Data points were evenly distributed across fake and real classes using

PyTorch’s torch.utils.data.WeightedRandomSampler.

The torchvision library was used for vgg16 bn and MobileNetV3 pre-

trained CNN models, while scikit-learn, librosa and torchaudio li-

braries were used respectively for the models and feature extraction.

3.3 ML Models

In this section are discussed the traditional machine learning models used

in the audio deepfake detection experiments, starting from the base model

choices and moving to the methods used for improving the model’s perfor-

mance.

3.3.1 Base Models

The initial step in developing a detection model involved establishing base-

line models. Four classifiers were selected for this purpose: Random Forest,

Support Vector Machine with an RBF kernel, CatBoost, and Logistic Re-

gression. These classifiers were chosen based on their proven e”ectiveness

and versatility across various domains. The baseline performance for each

model was defined by identifying the best result achieved across all feature

types and intervals without additional tuning. Additionally, two versions

of each model were considered: one optimized for data learning and the

45

other for generalization. These choices produced models with strong initial

performance, setting a solid foundation for further enhancement.

3.3.2 Features Reduction (RFE)

A possibility to improve the model’s performance is to reduce the number

of features used for training, trying to get rid of irrelevant or redundant

features. Principal Component Analysis (PCA) is a common method for this

purpose, and it demonstrated e”ectiveness in research by Iqbal et al. [39].

However, the primary concern with PCA is its potential to cause di!culties

when used with Random Forests (RF). RF models make branch decisions

based on specific, individual features, whereas PCA generates new features

as combinations of all original features. This can result in unpredictable

behavior and diminished performance when PCA is applied prior to RF,

as the interpretability and decision-making process of RF are disrupted.

Therefore, RFE, which retains the original feature set, was selected as a

more suitable method for this task.

Two main experiments were conducted with di”erent feature sets. The

first experiment considered 20 features per type, while the second expanded

this to 40 features per type (only Chroma STFT was set to 12). For both

experiments, models were evaluated under two scenarios: the first involved

retaining all features types without any selection, the second, instead, in-

volved applying RFE to retain only the top 20, 30, 40, 80, or 100 features

using the scikit-learn RFE implementation as a selector.

The tested models included Random Forest, CatBoost, and XGBoost.

Random Forest and CatBoost were selected because they had performed

best in previous experiments. Additionally, XGBoost was included based

on its proven e”ectiveness as highlighted in the article by Iqbal et al. [39].

These experiments were performed in two modalities. Initially, the Mel

spectrogram was included as a feature type. However, the results were sub-

optimal. An analysis of the features retained by RFE indicated that the se-

lected features were predominantly MFCC and Mel spectrogram, which are

known to provide correlated information. This redundancy likely hindered

performance. Consequently, in the second modality, the Mel spectrogram

was removed to assess whether the remaining features would o”er better

generalization. This approach aimed to reduce redundancy and encourage

the selection of a more diverse set of features.

A summary of the RFE process is provided in Algorithm 2.

46

Algorithm 2: Feature Selection Process Using RFE
Data: Feature types Ft (e.g., MFCC, CQT), Feature sets Fs, Models M

(e.g., RF, CatBoost, XGBoost), RFE thresholds R (e.g., 20, 30,

40), Normalization techniques N (e.g., RobustScaler)

Result: Optimized feature set for model training

Phase 1: Feature Combination Evaluation

foreach feature type ft → Ft do

Generate feature set Fs by retaining 20 and 40 features for each ft;

foreach normalization technique n → N do

Apply n ⇑ Fs;

Evaluate Fs by concatenating all retained features;

Train models M using Fs;

Store performance metrics Pmn;

end

end

Phase 2: Recursive Feature Elimination (RFE)

foreach model m → M do

foreach RFE threshold r → R do

Apply RFE to Fs to retain top r features based on model

importance;

Train model m on reduced feature set Frfe;

Store performance metrics Prfe;

end

end

Phase 3: Exclusion of Mel Spectrogram Features

Exclude Mel Spectrogram features from Ft;

Generate new feature set Fs→ by repeating Phase 1 without Mel Spec;

foreach model m → M do

foreach RFE threshold r → R do

Apply RFE to Fs→ ;

Train model m on Frfe;

Store performance metrics Prfe→ ;

end

end

Phase 4: Analysis and Final Selection

Compare Pmn, Prfe, and Prfe→ across all models;

Identify optimal feature set and normalization method based on

performance metrics;

Finalize feature set Fopt and scaling method for final model training;

47

Normalization

Throughout the above-listed experiments, it became evident that the fea-

tures had vastly di”erent ranges, necessitating normalization. Several nor-

malization techniques were tested, including StandardScaler, MinMaxScaler,

RobustScaler, and MaxAbsScaler from the scikit-learn preprocessing mod-

ule 3. Among these, the RobustScaler consistently yielded the best results,

as it was particularly e”ective in handling the presence of outliers in the

data, which may have skewed the results of other scalers. Consequently,

the RobustScaler was selected as the normalization technique for the final

models.

3.4 DL Models

In this section are discussed the methodologies and choices behind the defi-

nition of the deep learning models, from the base models to the final models,

illustrating the reasons behind the made choices.

3.4.1 Transfer Learning

Transfer learning has emerged as a powerful technique in machine learning,

particularly in scenarios where large datasets are unavailable or when lever-

aging pre-trained models can significantly enhance performance. In this

project, transfer learning is used to extract features and fine-tune models

for audio deepfake detection. Two architectures, MobileNetV3 and VGG16,

were utilized for this purpose.

Feature Extraction

Using the pre-trained models as feature extractors is the first way to transfer

their knowledge to the new task. It consists of processing the audio data

through the extractor module of the pre-trained model and using the output

as input to classifiers.

MobileNetV3 was employed as a feature extractor for the audio data,

as detailed in Section 3.2.1. This model, known for its e!ciency and com-

pact architecture, processed di”erent feature types to learn the most rele-

vant aspects for the task at hand. The output from the last layer of Mo-

bileNetV3 (after pooling), a 1D array consisting of 576 values, was then

3
https://scikit-learn.org/stable/api/sklearn.preprocessing.html

48

https://scikit-learn.org/stable/api/sklearn.preprocessing.html

fed into traditional classifiers such as Random Forest (RF), Support Vector

Machine (SVM), CatBoost, and XGBoost. Each classifier was trained using

default parameters, leveraging the rich features extracted by MobileNetV3

to enhance classification performance.

VGG16 was used to assess feature extraction at di”erent layers of the

network, focusing on layers 23, 33, and 43 as identified in Listing 3.2. By

examining features extracted at various stages of the VGG16 architecture,

the aim was to determine which layer provided the most e”ective represen-

tation for the task. To reduce complexity, only RF was used as the classifier

in these experiments.

1 # Load the pre -trained VGG16_bn model

2 vgg16_bn = models.vgg16_bn(weights=’DEFAULT ’)

3

4 # Initialize a list to hold the indices of the layers

5 conv_layer_indices = []

6

7 # Iterate over the model ’s features to find Max Pooling

layers

8 for idx , layer in enumerate(vgg16_bn.features):

9 if isinstance(layer , nn.MaxPool2d):

10 conv_layer_indices.append(idx)

11

12 # Print the indices of the convolutional layers

13 print("Indices:", conv_layer_indices)

14

15 # Output: Indices: [6, 13, 23, 33, 43]

Listing 3.2: VGG16 Layers Selection

The feature extraction process choices for both models is summarized in

Table 3.3.

Choice VGG16 MobileNetV3

Extraction Method Extracted from Layers

23, 33, 43

Extracted from the final

layer

Classifiers Random Forest Random Forest, SVM,

CatBoost, XGBoost

Feature Vector Size Varied depending layer 576-dimensional vector

Table 3.3: Comparison of Transfer Learning (Feature Extraction) Choices
for VGG16 and MobileNetV3

49

Fine Tuning

Fine Tuning is the second way to transfer knowledge from pre-trained mod-

els. It consists of training the entire model or a subset of it on the new

task. This process was done in two steps: first, an MLP was trained and

attached to the frozen pre-trained convolutional layers of the original model.

The whole model or a subset of it was then trained. This two-step approach

ensured that the pre-trained models’ learned knowledge was not lost during

fine-tuning.

For MobileNetV3, four di”erent MLP architectures were tested to

identify the best-performing model, as detailed in Table 3.4. Each classifier

was trained for 50 epochs, stopping the training if the validation loss did

not improve for five consecutive epochs.

Version Architecture

MLP1 576 (input) → 400 → 2 (output)

MLP2 576 (input) → 256 → 2 (output)

MLP3 576 (input) → 128 → 2 (output)

MLP4 576 (input) → 328 → 128 → 2 (output)

Table 3.4: MLP Architectures for MobileNetV3

Once the best-performing MLP was selected, the entire MobileNetV3

model was fine-tuned by lowering the learning rate by a factor of ten (to

0.0001) and training for 80 epochs, with early stopping applied if no im-

provement was seen for eight epochs. The Adam optimizer and CrossEn-

tropyLoss were used throughout the training process.

For VGG16, given its more complex architecture, a single MLP was

trained for each feature type. The MLP architecture used is detailed in

Listing 3.3.

1 class Classifier(nn.Module):

2 def __init__(self , vgg16):

3 super(Classifier , self).__init__ ()

4

5 # Use existing layers from VGG16

6 self.linear1 =

vgg16.classifier [0]. requires_grad_(False)

7 self.relu1 = vgg16.classifier [1]

8 self.dropout1 = vgg16.classifier [2]

9 self.relu2 = vgg16.classifier [4]

50

10 self.dropout2 = vgg16.classifier [5]

11

12 # Define new layers

13 self.linear2 = nn.Linear (4096, 2048, bias=True)

14 self.linear3 = nn.Linear (2048, 2, bias=True)

15

16 def forward(self , x):

17 x = self.linear1(x)

18 x = self.relu1(x)

19 x = self.dropout1(x)

20 x = self.linear2(x)

21 x = self.relu2(x)

22 x = self.dropout2(x)

23 x = self.linear3(x)

24 return x

Listing 3.3: MLP for VGG16

By freezing the first layer of the VGG16 classifier, a huge reduction

in parameters (102, 764, 544) was achieved while still maintaining optimal

performance. The fine-tuning process involved freezing the first two convo-

lutional layers of the feature extractor and the first layer of the classifier,

with the remaining layers being trained for 40 epochs using a learning rate

of 0.0001, with early stopping after seven epochs if no improvement was

noted. Adam was used as the optimizer, with CrossEntropyLoss as the loss

function.

The fine-tuning process for both models is summarized in Table 3.5.

Choice VGG16 MobileNetV3

MLPs Tried 1 MLP (Listing 3.3) 4 MLPs (Table 3.4)
MLP Training Epochs
and Patience

40 epochs,
patience 7

50 epochs,
patience 5

MLP Learning Rate 0.001 0.001
Frozen Layers Classifier: only first,

Extractor: up to 27
None

Fine-Tuning Epochs and
Patience

40 epochs,
patience 7

80 epochs,
patience 8

Learning Rate (LR) for
Fine-Tuning

0.0001 0.0001

Optimizer Adam Adam
Loss Function CrossEntropyLoss CrossEntropyLoss

Table 3.5: Comparison of Transfer Learning (Fine-Tuning) Choices for
VGG16 and MobileNetV3

51

3.4.2 3-Channels Mapping

Transfer learning is not the only strategy to enhance model performance.

In fact, particularly when fine-tuning, it can be both computationally ex-

pensive and time-consuming. To address this challenge while improving

the VGG16 model’s performance, a novel approach was introduced to in-

crease its flexibility. This approach involved converting the extracted 2D

feature images into 3D representations by mapping each pixel to an RGB

value. This additional processing step, applied before feeding the data into

the extractor, allowed the model to capture more complex patterns and

interactions within the features. The process is illustrated in Figure 3.2.

1x112x112Input Output

 3x224x224

Scale values to [0, 1]

Map to 3D image

Upsample to 224x224

Scale to [0, 255]

Adaptive Avg Pooling 7x7

vgg16_bn.features

Flattening

FC 25088 to 4096 Frozen

FC 4096 to 2048

ReLu and Dropout VGG16

ReLu and Dropout VGG16

FC 2048 to 2

3D Mapper

Extractor

Classifier

25088x1

Figure 3.2: 3D Mapper Implementation Schema

The 3D Mapper was implemented using two distinct methods:

• Convolutional Neural Network (CNN)

• Look-Up Table (LUT)

The CNN-based approach, as shown in Listing 3.4, integrated a convolu-

tional module within the model, responsible for converting the 2D feature

image into a 3D image suitable for the classifier. Several configurations

were explored, varying in the number of convolutional layers, kernel sizes,

and scaling methods for the output, as detailed in Table 3.6. The scaling

methods included: no scaling (64-128-3-none), applying a sigmoid function

to scale the values between 0 and 1, and learning the scaling values with

a subsequent sigmoid to ensure output within the [0, 1] range (64-128-3-

learnable). In all cases, the final output was rescaled to the standard image

range of [0, 255].

1 class Mapper3D(nn.Module):

2 def __init__(self):

3 super(Mapper3D , self).__init__ ()

52

4 self.conv1 = nn.Conv2d(in_channels =1,

out_channels =3, kernel_size =1)

5 self.bn1 = nn.BatchNorm2d (3)

6 self.upsample = nn.Upsample(scale_factor =2,

mode=’bilinear ’, align_corners=True)

7

8 def forward(self , x): # Input: (B, 1, 112, 112)

9 x = F.relu(self.bn1(self.conv1(x))) # (B, 3,

112, 112)

10 x = torch.sigmoid(x) # scale to [0, 1]

11 x = self.upsample(x) # (B, 3, 224, 224)

12 x = x * 255.0 # scale to [0, 255]

13 return x

Listing 3.4: 3D Mapper CNN Implementation Example

The LUT-based approach, depicted in Figure 3.3, o”ers a simpler yet

more computationally e!cient alternative. This method directly maps the

2D image to a 3D image using a lookup table, requiring less training time but

o”ering less flexibility compared to the CNN approach. The key variables

in this method include the number of quantization levels, the ⇀ parameter,

and the initialization method (random or linear). These parameters were

adjusted to evaluate their impact on model performance.

Each version of the 3D Mapper was integrated into the VGG16 model

with the feature extractor, and the initial layer of the classifier kept frozen

(Listing 3.3). Only the 3D Mapper and the final layers of the MLP, were

left trainable. The model was trained over ten epochs, using MFCC and

CQT features, as they largely outperformed other feature types in prior

experiments. The Adam optimizer and CrossEntropyLoss were used, with

a learning rate of 0.001, and early stopping was triggered if no improvement

was observed after five consecutive epochs.

Input Tensor (B, 1, S1, ..., Sk)

Quantization Normalize to Levels

Look-Up Table (LUT)

Indexing and Linear Interpolation

Upsampling Scale Factor 2

Output Tensor (B, N, S1, ..., Sk)

Rescaling to [0, 255]

Figure 3.3: 3D Mapper Look-Up Table Schema

53

Version Name Mapping Architecture

64-128-3-sigmoid CNN Appendix Listing B.1
64-128-3-learnable CNN Appendix Listing B.2
64-128-3-none CNN Appendix Listing B.3
64x5-3x1-sigmoid CNN Appendix Listing B.4
3-1-sigmoid CNN Appendix Listing B.5
5-3-random LUT Levels = 5,ω = 3, Init = Random

10-3-random LUT Levels = 10,ω = 3, Init = Random

20-3-random LUT Levels = 20,ω = 3, Init = Random

40-3-random LUT Levels = 40,ω = 3, Init = Random

10-3-linear LUT Levels = 10,ω = 3, Init = Linear

10-1.5-linear LUT Levels = 10,ω = 1.5, Init = Linear

Table 3.6: 3D Mapper Architectures

3.4.3 Combining Fine-Tuning and Mapping

Both fine-tuning and mapping demonstrated significant but distinct im-

provements in model performance: fine-tuning was particularly e”ective

with MFCC features, while mapping yielded better results with CQT fea-

tures. To further enhance performance, a combined approach that integrates

these two methodologies was explored.

In this combined approach, the four mapper models described in Table

3.6 were subjected to fine-tuning. The fine-tuning process was conducted

as detailed in Section 3.4.1. Specifically, the trainable layers of the end-to-

end (E2E) model included the mapper, the last two layers of the feature

extractor, and the last two layers of the classifier. The model was trained

for 25 epochs, with early stopping applied if no improvement was observed

for five consecutive epochs. The Adam optimizer and CrossEntropyLoss

were used, with a learning rate of 0.0001.

To obtain a 1D vector from the extractor’s 3D output, two strategies

were employed:

Flattening The first strategy focused on preserving as much information

as possible by inserting a flattening layer before the classifier, as illustrated

in Figure 3.2. This flattening layer reshaped the output from (B, 512, 7, 7) to

(B, 25088, 1, 1), which was then fed into the classifier. While this approach

retained all the information, it substantially increased the computational

complexity, as the first fully connected (FC) layer of the classifier had to

process a much larger input vector. To mitigate the impact on training time,

a technique applied in this project was to freeze the entire first classifier

54

layer. However, this approach did not reduce the model’s memory footprint,

therefore a pooling-based method was explored as an alternative.

Parameters Reduction The second strategy aimed to reduce computa-

tional complexity while preserving performance by replacing the flattening

layer with a pooling layer, as depicted in Figure 3.4. Two pooling techniques

were tested:

• Global Average Pooling: This approach averaged the entire feature map,

reducing the output from (B, 512, 7, 7) to (B, 512, 1, 1). While this dras-

tically decreased the number of parameters, it discarded frequency infor-

mation, which could potentially hinder model performance.

• Column Average Pooling: To retain frequency information, column av-

erage pooling was applied, where the average was taken across columns,

reducing the output from (B, 512, 7, 7) to (B, 512, 7, 1). The output was

then flattened to obtain the final 1D vector. This method struck a balance

between preserving important frequency data and reducing the model’s

parameter count.

The parameter reduction achieved through these pooling methods is

summarized in Table 3.7, which details the versions tested, the number of

parameters involved, and the percentage reduction achieved.

Version
Number of Parameters Percentage Reduction

Total Trainable Total Trainable

Flattening 125 884 427 20 200 907 - -

Global Avg Pooling 14 988 811 12 069 835 88.1% 40.2%

Column Avg Pooling 16 561 675 13 642 699 86.8% 32.5%

Table 3.7: Parameter Reduction through Pooling Techniques

3.4.4 Combining Features

The combination of MFCC and CQT features was explored to harness the

complementary strengths of these two feature types. Indeed, while MFCC

features demonstrated strong learning capabilities, especially in terms of

capturing detailed nuances in the audio signals, CQT features excelled in

generalization, particularly in handling diverse and unseen data.

55

1x112x112Input Output

 3x224x224

2

Scale values to [0, 1]

Map to 3D image

Upsample to 224x224

Scale to [0, 255]

Adaptive Avg Pooling 7x7

vgg16_bn.features

Global Avg Column Avg
+ FlatteningOR

FC 512 to 512

FC 512 to 2

FC 3584 to 512

ReLu and Dropout (p=0.5)

OR

3D Mapper

Extractor Classifier

512x1 OR 3584x1

Figure 3.4: 3D Mapper Schema with Parameters Reduction

OR

Classifier Trained
on CQT Features

Classifier Trained
on MFCC Features

Take the Maximum
Column-wise

r x 2

Stack the 2
Extracted Vectors

Extractor Trained
on CQT Features

Extractor Trained
on MFCC Features

1x112x112Input
(2 images) Output

3D Mapper (Frozen) Extractor (Frozen) Classifier

Best Mapper Trained
on MFCC Features

Best Mapper Trained
on CQT Features

Combiner

r x 1

2

Figure 3.5: Ensemble DL Model Schema

Several methods exist for combining multiple features, such as concate-

nation, averaging, stacking, or employing ensemble methods. Given that

we already had well-calibrated models for each feature type, the ensemble

method was selected. Specifically, the ensemble model combined the out-

puts from the MFCC and CQT models by taking the maximum value of

their respective extractor outputs, e”ectively integrating the strengths of

both features at the model level.

The ensemble methodology is illustrated in Figure 3.5, where the out-

puts of the two extractors (one trained on MFCC and the other on CQT)

are combined by taking the maximum value column-wise. This approach

preserves the individual strengths of each feature set while creating a more

robust combined model.

Following the same strategies outlined in Section 3.4.3, two techniques

were employed to convert the 3D output of the extractor into a 1D vector:

Flattening and Pooling for parameters reduction. For each scenario, the best

mapping version for each feature type was selected (i.e. models leveraging

both 3D Mapping and Fine-Tuning), and three model types were tested:

1. Model A: Utilized the best-performing models for each feature type (map-

per and extractor), with the classifier trained solely on MFCC features.

2. Model B: Similar to Model A, but with a classifier trained solely on CQT

features.

56

3. Model C: This model was trained on the newly combined features, start-

ing from the weights of the previous models, aiming to further refine the

ensemble’s performance.

It is worth noting that Model A and Model B were not retrained on the

combined features. Specifically for Model A the classifier of the best MFCC

based model from previous experiments was used, with its learned weights.

The same was done for Model B, using the best CQT based model. Model

C was trained for 35 epochs, with an early stopping patience of ten epochs,

using the Adam optimizer and CrossEntropyLoss, with a learning rate of

0.0001.

3.4.5 Final Model

Based on the previous sections, the best performing model was selected

for the final evaluation. Given that earlier evaluations were conducted on

small subsets of the data (i.e., test and validation sets), the final models

were trained and evaluated on the full dataset to provide a more reliable

estimate of their performance.

Three versions of the final model were proposed, each following the ar-

chitecture depicted in Figure 3.5 but di”ering in their training strategies:

• DeepSpectraNet: In this version, the submodels handling MFCC and

CQT features were trained separately. The final model was formed by

combining these submodels with the torch.max operation on the extrac-

tor’s output, and only the final classifier was trained end-to-end (E2E),

with the first fully connected (FC) layer and the rest of the model frozen.

• DeepSpectraNetLite: This model is similar to DeepSpectraNet but

utilizes global average pooling instead of flattening to reduce the number

of parameters. This approach was aimed at creating a lighter version of

the model with reduced computational complexity.

• DeepSpectraNetFlex: Starting from the weights of the flattening-

based submodels trained separately on a data subset, this version was

trained E2E on the full dataset. The only frozen layers were the first

two convolutional layers of the submodels extractors and the first fully

connected layer of the classifier.

57

3.4.6 Fully E2E Version

One of the limitations of the previous models, is their reliance on pre-

determined audio features such as Mel-spectrograms, MFCCs, and CQT.

This makes those models highly task-specific, as di”erent audio-related

problems may require di”erent types of features. To address this issue

and craft a more generalizable solution, was developed a fully end-to-end

(E2E) model that can autonomously extract relevant audio features directly

from raw waveform data. This allows the model to be used across a broader

range of audio data without the need for hand crafted feature engineering.

To implement this end-to-end approach, a new preprocessing module was

embedded into the DeepSpectraNetFlex model. This module is designed to

take raw audio as input and produce two di”erent 112x112 images, which

are then processed by the existing model (as shown in Figure 3.5). The

new module leverages the outcomes gained from previous experiments, thus

it focuses on capturing frequency-based representations of the audio signal

and consists of three main blocks (Figure 3.6):

Signal Preprocessing Block This block is responsible for converting

the raw audio waveform into a time-frequency representation. It achieves

this using a Short-Time Fourier Transform (STFT) with a Hann window.

Two di”erent STFT operations are performed with varying window and

hop lengths to generate two complementary images. One image focuses

on shorter time frames, capturing fine temporal details, while the other

emphasizes longer time frames to capture broader frequency information.

Convolutional Block The time-frequency representations generated in

the previous block are further processed by a convolutional block. This block

enhances the images by selectively focusing on the most important regions of

the spectrogram. Each image is passed through three convolutional layers,

with 32, 64, and 128 filters, respectively. Each convolutional layer is followed

by batch normalization, a ReLU activation, and a Channel and Spatial

Attention Module (CSAM).

The CSAM enables the model to learn which features are most critical

by applying both channel and spatial attention. Channel attention learns a

weighting vector that scales each filter’s contribution, while spatial atten-

tion applies a similar weighting mechanism across the pixels of the image.

These weights are computed using the mean and maximum values of the

58

activations and are learned during end-to-end training.

Shape Adaptation Block The shape adaptation block ensures that the

output images from the convolutional block match the dimensions expected

by the downstream modules in the original DeepSpectraNetFlex model. This

allows the two newly generated images to be seamlessly integrated into the

pre-existing architecture.

Training DeepSpectraNetE2E The fully end-to-end model, namedDeep-

SpectraNetE2E, was trained for 30 epochs with an early stopping criterion

based on validation loss, using a patience of seven epochs. The Adam op-

timizer was employed, with a learning rate of 0.0001 and a weight decay of

0.00001. The same frozen layers as DeepSpectraNetFlex were applied, in-

cluding the first two convolutional layers of the submodels’ extractors and

the first fully connected layer of the classifier. CrossEntropyLoss was used

as the loss function to optimize classification performance.

Same Operations
for the two
Branches

with different
weights

STFT - Hann
Window: 256 - Hop: 128

STFT - Hann
Window 1024 - Hop 512

Branch 1

Branch 2

Convolution
Kernel (3, 3)

Batch Normalization

Signal Processing Block

ReLu

Repeat for 3 Layers

Channel and Spatial
Attention Module

AdaptiveAvgPool2d
(112, 112)

Conv2d
(128, 1, kernel=1)

Shape Adaptation Block

Conv Block

Raw
Waveform

Two Images
1 x 112 x 112

Figure 3.6: Fully E2E Model Additional Preprocessing Module

59

Chapter 4

Results and Explainability

4.1 Experimental Setup

In this section, we outline the experimental setup used for training and

evaluating the models. Two primary environments were employed: a local

machine for initial testing and development, and the Lightning AI Cloud 1

for large-scale, final model training and optimization.

4.1.1 Local Machine

The local machine used for the experiments is a Apple MacBook Pro (M1

Pro) 2. It features an Apple M1 Pro chip, with an 8-core CPU that includes

6 performance cores and 2 e!ciency cores. The machine is equipped with a

14-core GPU and a 16-core Neural Engine, providing up to 200GB/s mem-

ory bandwidth and 16GB unified memory.

The programming language used for the experiments is Python 3.11.5 [40].

To manage the environment and dependencies, a virtual environment run-

ning Python 3.11.5 was used. The primary libraries employed include:

• Machine Learning Models: Scikit-learn

• Metrics: Scikit-learn Metrics, pyeer

• Statistics: Scipy

• Neural Networks: PyTorch

• Audio Processing: Torchaudio, Librosa

• Data Handling: Pandas, Numpy

• Visualization: Matplotlib, Seaborn

1https://lightning.ai
2https://support.apple.com/en-md/111902

60

• Pretrained Models: torchvision models, including vgg16_bn(weights=

’IMAGENET1K_V1’), mobilenet_v3_small(weights=’IMAGENET1K_V1’)

4.1.2 Lightning AI Cloud

For more demanding training, the Lightning AI cloud was utilized, leverag-

ing the power of NVIDIA L4 GPUs. The virtual environment on the cloud

machine also ran Python 3.11.5 with similar library setups as the local ma-

chine, ensuring consistent execution of models across both platforms.

4.2 Evaluation Metrics

During the experiments, the primary metrics used to evaluate the perfor-

mance of the models were Balanced Accuracy and F1 Score, with a greater

emphasis on balanced accuracy in situations where the choice between the

two metrics was not obvious. These metrics were selected because they are

well-suited for handling imbalanced data, which was a critical aspect of this

project. For the final evaluation, several additional metrics were considered

to provide a comprehensive assessment of the models’ performance.

Two main categories of metrics are discussed in this section, with a focus

on binary classification problems:

• Threshold-dependent metrics: These metrics are calculated at a spe-

cific threshold setting and include Accuracy, Balanced Accuracy, and F1

Score. They depend directly on the classification threshold used to de-

termine the final output class.

• Threshold-independent metrics: These metrics, including PR AUC,

ROC AUC, and EER, evaluate the model’s performance across a range

of threshold settings. They provide a measure of the model’s ability

to discriminate between the classes irrespective of the specific decision

threshold. This category of metrics is especially useful for evaluating the

performance of binary classifiers at various levels of decision-making rigor.

The threshold-dependent metrics can be derived from the confusion ma-

trix. In a binary classification problem, the confusion matrix consists of

four values:

• True Positive (TP): The model correctly predicts the positive class.

61

vgg16_bn(weights='IMAGENET1K_V1')
vgg16_bn(weights='IMAGENET1K_V1')
mobilenet_v3_small(weights='IMAGENET1K_V1')

• True Negative (TN): The model correctly predicts the negative class.

• False Positive (FP): The model incorrectly predicts the positive class

when the true class is negative (also known as a ”Type I error”).

• False Negative (FN): The model incorrectly predicts the negative class

when the true class is positive (also known as a ”Type II error”).

Scenario P N TP FP TN FN Acc. Bal. Acc. F1 Score

A 900 100 890 50 50 10 94.0 % 74.5 % 96.5 %
B 100 900 50 10 890 50 94.0 % 74.5 % 64.1 %

Table 4.1: Di”erent Class Imbalance Scenarios for Metrics Comparison

4.2.1 Accuracy

Accuracy is used in classification tasks to measure the proportion of correct

predictions made by the model.

Accuracy =
TP + TN

TP + TN + FP + FN

This metric represents the fraction of correctly classified instances (both

true positives and true negatives) over the total number of instances in

the dataset. In other words, it quantifies how often the model is correct,

regardless of the class.

While it o”ers a general overview of model performance, its reliability

reduces in imbalanced datasets, where one class largely outnumbers the

other. In such cases, a model could achieve high accuracy by predominantly

predicting the majority class while neglecting the minority class entirely. An

example is provided in Table 4.1. In scenario A, the model is equivalent to a

random classifier in the negative class, but it achieves a high accuracy of 94%

due to the large number of positive samples correctly classified. The same

holds for scenario B, where the model is equivalent to a random classifier

in the positive class. Therefore, accuracy must be evaluated alongside more

class-sensitive metrics to ensure a fair assessment of model performance

across both classes.

62

4.2.2 Balanced Accuracy

Balanced accuracy addresses the limitations of standard accuracy, ensuring

that both classes contribute equally to the evaluation.

Balanced Accuracy =
1

2

(
TP

TP + FN
+

TN

TN + FP

)

Balanced accuracy is the average of the true positive rate (sensitivity)

and true negative rate (specificity). This allows the metric to capture the

model’s performance across both classes without being biased towards the

majority class. Each class’s contribution to the final result is equal, even if

the dataset is skewed.

Looking at the scenarios in Table 4.1, the balanced accuracy for both

scenarios is 74.5%, which is lower than the accuracy metric. This shows

that the balanced accuracy provides a more accurate representation of the

model’s performance in imbalanced datasets.

4.2.3 F1 Score

The F1 Score quantifies test accuracy by harmonizing precision and recall.

Precision is defined as the ratio of correctly predicted positive observations

to the total predicted positives, while recall represents the ratio of correctly

predicted positive observations to all observations in the actual class.

F1 Score = 2⇒ Precision⇒ Recall

Precision + Recall

where Precision =
TP

TP + FP
and Recall =

TP

TP + FN

The F1 Score, being the harmonic mean of precision and recall, o”ers a

more balanced measure of a model’s accuracy, particularly useful in scenar-

ios with imbalanced datasets. This metric is sensitive to the performance

of the positive class, highlighting its utility in fields where missing positive

cases (such as fraud or disease) carries a higher risk than missing nega-

tive cases. Therefore, its usage must be carefully considered based on the

problem at hand.

For instance, in Table 4.1, Scenario A shows an F1 Score of 96.5%, indi-

cating a very strong classifier, despite a weak performance on the negative

63

class. Conversely Scenario B has an F1 Score of 64.1%, suggesting a weaker

classifier, despite the positive class performance is the same as the negative

class in Scenario A, where the F1 Score suggested a strong classifier. This

reflects the F1 Score’s sensitivity to the positive class, which is instead bal-

anced in the Balanced Accuracy metric, with this latter returning the same

value for both scenarios.

In summary, the F1 Score is indeed a valuable metric in scenarios where

false negatives are more critical than false positives, however if it is not the

case, balanced accuracy should be considered for a more uniform assess-

ment across classes, particularly when equal importance is assigned to both

positive and negative classifications. For this reason the balanced accuracy

was chosen as the primary metric for model evaluation in this project.

4.2.4 PR AUC

The Precision-Recall Area Under the Curve (PR AUC) reflects the rela-

tionship between precision and recall for di”erent probability thresholds.

Thereby it provides a comprehensive evaluation of the model’s performance.

The PR AUC is derived from the Precision-Recall curve, which plots the

precision (y-axis) against the recall (x-axis) for every possible cuto”. The

area under this curve represents the model’s ability to correctly classify the

positive class across di”erent threshold settings. A higher area indicates

better performance, with a perfect score of 1 indicating that the classifier

can achieve high precision without sacrificing recall.

PR AUC provides a more informative measure in situations where pos-

itive class predictions are more critical, while it may be misleading in sce-

narios where both classes are equally important as it struggles to capture

the negative class’s performance. Thereby, as seen for F1 Score, it finds

practical applications in fraud detection or disease screening, where missing

a positive case could be detrimental.

4.2.5 ROC AUC

The Receiver Operating Characteristic Area Under the Curve (ROC AUC)

evaluates a model’s discriminative ability at various threshold settings by

plotting the true positive rate (TPR) against the false positive rate (FPR).

True Positive Rate (TPR) =
TP

TP + FN
= Recall

64

False Positive Rate (FPR) =
FP

TN + FP

The ROC curve plots TPR against FPR, illustrating the trade-o”s be-

tween true positive identifications and the false positive rate at which they

occur. An AUC of 1.0 signifies a perfect model that discriminates per-

fectly between the classes, while an AUC of 0.5 indicates a model with no

discriminative ability, equivalent to random guessing.

Conversely from PR AUC, which focuses on the positive class, ROC

AUC provides a global view of the model’s performance across both classes.

This makes it suitable for situations where the costs of false positives and

false negatives have similar importance. ROC AUC remains robust across

class imbalances, making it a reliable metric even when positive and negative

classes are not equally represented.

4.2.6 Equal Error Rate (EER)

Equal Error Rate (EER) is a metric commonly used to determine the thresh-

old value where the false positive rate (FPR) and the false negative rate

(FNR) are equal. In the context of binary classification, this metric is par-

ticularly useful in scenarios where the cost of false positives is equivalent to

the cost of false negatives.

The EER can be derived from the point on the ROC curve where the line

y = 1↑x intersects the ROC curve. This point means a balance between the

false acceptance rate (FAR, synonymous with FPR) and the false rejection

rate (FRR, synonymous with FNR). Mathematically, the EER is the specific

value where:

FPR = FNR where FNR = 1↑ TPR

EER is particularly useful in security systems like biometric verification,

where it’s crucial to balance between denying access to valid users and

granting access to imposters.

By focusing on the point where FPR equals FNR, the EER provides a

clear criterion for comparing di”erent biometric systems or any classification

system where decision thresholds are adjustable and equal importance is

given to both types of errors.

65

4.3 Results

As explained in Section 3.1.1, the test set consists of synthetic data gener-

ated by a generative audio model that is not included in the training set.

This allows us to use the test set results to evaluate the model’s general-

ization capability. In contrast, the validation set results reflect the model’s

ability to learn from the data. Therefore, in the following section, we will

consistently distinguish between the validation and test set results.

During the experiments, the primary metrics used to evaluate the perfor-

mance of the models were Balanced Accuracy and F1 Score, with a greater

emphasis on balanced accuracy in situations where the choice between the

two metrics was not obvious. The reason behind this choice is tackled in

Section 4.2, specifically in the subsection 4.2.3.

4.3.1 Traditional Machine Learning

In this section are presented the results of the approaches based on tradi-

tional machine learning models, from the feature engineering phase (encom-

passing the extraction interval, feature type, and hop and window length

impact) to the final models.

All results related to specific components of feature engineering are pre-

sented as averages. For completeness, the detailed results are available in

the Appendix, specifically in Figures A.1 and A.2.

Extraction Interval

The extraction interval refers to the length of the audio segment from which

features are extracted, consequently it directly influences the number of

extracted data points (with longer intervals yielding fewer data points).

Since in this phase only a subset of the data is used, the number of data

points may have a large influence, therefore, models were tested under two

scenarios:

• Equalized (Figure 4.1a): The number of data points was equalized across

all intervals to enable an unbiased comparison. The number was chosen

as the minimum number of data points across all intervals, 4000 in this

case.

• Not Equalized (Figure 4.1b): The number of data points varied with

the interval length, leading to fewer data points for shorter intervals.

66

(a) (b)

Figure 4.1: Avg Extraction Interval Impact Across Models: a) equalized
num. samples across intervals, b) varying num. samples across intervals.

specifically 30000, 15000, 8000, and 4000 data points for intervals of 0.5,

1, 1.5, and 2 seconds respectively.

As expected, the non-equalized scenario exhibited slightly better perfor-

mance. Interestingly, both scenarios demonstrated an increasing trend in

performance as the extraction interval increased, particularly in the valida-

tion set. Unfortunately, it was not possible to evaluate larger intervals, as

the majority of the fake test data was approximately 2 seconds long. Intro-

ducing padding to the shorter intervals would have introduced bias into the

evaluation.

Based on these results, only two out of the four extraction intervals were

retained for subsequent experiments on hop and window length: 2 seconds,

as it demonstrated the best performance, and 1 second, to provide a more

comprehensive analysis.

Feature Type

In Figure 4.2, the performance of various feature types is depicted, with

Figure 4.2a illustrating the results when the number of samples is equalized

across intervals, and Figure 4.2b showing results with a varying number of

samples across intervals.

67

(a)

(b)

Figure 4.2: Avg Feature Type Performance Across Models: a) equalized
num. samples across intervals , b) varying num. samples across intervals.

The initial observation is that the di”erence between the two scenarios is

not substantial. The non-equalized variant exhibited only a slight improve-

ment in the performance of all features. Consequently, we can focus on the

non-equalized scenario, as the “data points augmentation” e”ect should be

leveraged.

What clearly emerges is that the Mel spectrogram and MFCC features

are the top performers, with MFCC showing a slight edge in learning the

data and the Mel spectrogram significantly emerging in generalization. RMS

and CQT also showed potential, although they did not perform as well as

the Mel spectrogram and MFCC. The remaining features demonstrated

uniformly poor performance.

68

For this reason and due to the computational complexity of the models,

only the Mel spectrogram and MFCC features were retained for subsequent

experiments on the hop and window length.

Hop and Window Length

The impact of the hop and window lengths was evaluated for the Mel spec-

trogram and MFCC features, considering 1-second and 2-second extrac-

tion intervals, and using Random Forest (RF) and Support Vector Machine

(SVM) models as classifiers. The RF model was chosen as it demonstrated

the best performance in previous experiments, while the SVM was selected

for being a well-known traditional, non-ensemble model. The results are

illustrated in Figures 4.3a and 4.3b.

The impact of hop and window lengths was not significant, as di”erent

models and features had varying optimal values. For the Random Forest

results, it is interesting to note that MFCCs seem to benefit from shorter

extraction intervals and window lengths. The reasons for this are not en-

tirely clear, but it is possible that MFCCs, which are more focused on high

frequencies, benefit from higher temporal resolution. About the hop length

e”ect, the results showed a minimal impact, almost null in the case of SVM.

Generally, a 1-second extraction interval appeared to provide better gen-

eralization on the test set, but the SVM showed reduced performance on

the validation set.

At the moment the goal is to find the best possible feature setting to

learn the data, therefore the the 2-second extraction interval was retained.

This choice helped to reduce model complexity and computational time. To

further enhance generalization on the test set, we attempted to combine dif-

ferent features and reduce them using Recursive Feature Elimination (RFE),

as detailed in Section 3.3.2.

Models

In this section are presented the results of the experiments conducted to

find the best traditional machine learning model. The results encompass the

baseline models, the impact of Mel spectrogram features, the e”ectiveness

of Recursive Feature Elimination (RFE), and the final model evaluation.

Baseline Models Table 4.2 presents the performance of the traditional

ML baseline models. For each classifier, the best results have been ex-

69

(a)

(b)

Figure 4.3: Impact of hop (y-axis) and window length on: a) Random Forest
performance, b) SVM performance.

tracted from Figure A.2, with separate considerations for scenarios focused

on learning and generalization. The balanced accuracy metric, particularly

relevant in cases of unbalanced data with a predominant positive class,

highlights the Random Forest model using Mel spectrogram features and

a 1.5-second extraction interval as the best for generalization. This model

achieved a balanced accuracy of 77% on the test set, a notable result given

the task’s complexity. On the other hand, the Catboost model, also utiliz-

ing Mel spectrogram features and a 1.5-second extraction interval, excelled

in learning-oriented tasks, achieving a balanced accuracy of 99% on the val-

idation set. These two models were established as baselines for subsequent

experiments.

70

Classifier Feature Interval (s) Goal
F1 (%) Bal Acc (%)

Val Test Val Test

RF
MFCC 2 Learning 99 83 98 59

Mel Spec 1 Generalizing 98 85 96 77

SVM - RBF
MFCC 1 Learning 97 76 96 63

Mel Spec 2 Generalizing 95 75 91 75

Catboost
Mel Spec 1.5 Learning 99 86 99 68
MFCC 0.5 Generalizing 97 79 95 73

LR
MFCC 2 Learning 90 55 84 44

Mel Spec 2 Generalizing 91 79 81 80

Table 4.2: Traditional ML baseline results

To increase models’ performance, various feature types were combined,

to leverage their di”erent strengths. The results in Table 4.3 provide a

comprehensive view of the performance di”erences between models trained

on the full feature set and those with features reduced via Recursive Feature

Elimination (RFE). The comparison between validation (Val) and test set

results sheds light on the models’ capabilities to learn from the training

data and generalize to new, unseen data, respectively.

Impact of Mel Spectrogram Features Considered stand-alone, the

Mel spectrogram features were the best for generalization, but when com-

bined with other features, they behaved oppositely. Including Mel spec-

trogram features generally resulted in high validation performance across

all classifiers but showed varied results in generalization. For instance, the

Random Forest (RF) classifier achieved a balanced accuracy (Bal Acc) of

77% on the test set with Mel spectrograms included, which was outper-

formed (85%) when they were excluded. This pattern is consistent across

the XGBoost and Catboost models, where excluding Mel spectrograms led

to better generalization on the test set, particularly for XGBoost and Cat-

boost, which saw increases of 16% and 13% in F1 scores, respectively.

This suggests that while Mel spectrograms can enhance the model’s abil-

ity to learn from training data, they may introduce redundancy or correlated

information that hinders the model’s ability to generalize to unseen data.

This observation is further supported by the RFE analysis, which indicates

that when Mel spectrogram features were included, the retained features

were predominantly MFCC and Mel spectrograms—potentially leading to

71

overfitting due to the overlap in information.

Classifier Feat. per Type Feat after RFE Mel Spec
F1 (%) Bal Acc (%)

Val Test Val Test

RF

20 Not Applied Included 97 78 97 77

20 Not Applied Excluded 94 78 95 85

20 40 Included 98 78 97 76

20 30 Excluded 96 92 96 92

XGBoost

20 Not Applied Included 99 72 99 71

40 Not Applied Excluded 98 89 98 88

20 40 Included 99 79 99 77

20 40 Excluded 98 89 98 87

Catboost

20 Not Applied Included 99 76 99 74

40 Not Applied Excluded 99 87 99 85

20 80 Included 99 76 99 74

40 80 Excluded 98 89 98 87

Table 4.3: Traditional ML Results Combining the Features and Reducing
them Using RFE

E!ectiveness of Recursive Feature Elimination (RFE) RFE’s ef-

fectiveness in improving model performance is evident, especially when Mel

spectrogram features are excluded. For instance, RF with 30 features re-

tained through RFE and without Mel spectrogram features achieved the

highest test set performance, with an F1 score and balanced accuracy both

at 92%. Similarly, for XGBoost and Catboost, using RFE to select a re-

duced feature set without Mel spectrograms consistently improved test set

performance, achieving balanced accuracy scores up to 89% and 87%, re-

spectively.

The RFE process appears to e”ectively mitigate overfitting by focusing

the model on the most informative and non-redundant features, thus en-

hancing generalization capabilities. The models’ ability to retain high vali-

dation performance while improving test set performance post-RFE demon-

strates that this method is well-suited for the feature selection task in this

context.

72

Figure 4.4: Final RF Model Curves for Test Set

Figure 4.5: Final RF Model Curves for Validation Set

Final Model The final Random Forest (RF) model was thoroughly valu-

ated to compare its performance against baseline models and existing state-

of-the-art methods.

The ROC and PR curves (Figures 4.5 and 4.4) provide insights into the

model’s discriminative power and precision across di”erent thresholds. On

the validation set, the final RF model achieved an area under the ROC

curve (AUC) of 1.00, and the PR AUC was also 1.00, indicating excellent

learning capabilities and almost perfect precision-recall tradeo”. The test

set results were similarly robust, with an ROC AUC of 0.98 and a PR AUC

of 0.99, demonstrating strong generalization to unseen data, despite a slight

drop in performance compared to the validation set.

The confusion matrix, presented in Figure 4.6, further highlights the

73

model’s accuracy. The final RF model showed a strong ability to correctly

classify both positive and negative classes, reflecting its balanced perfor-

mance and low misclassification rates on the validation set. On the test set,

most misclassifications were false negatives, indicating that the model was

more likely to incorrectly classify real audio as fake.

Figure 4.6: Final RF Model Confusion Matrix

Classifier
Acc F1 Bal Acc PR AUC ROC AUC EER

Val Test Val Test Val Test Val Test Val Test Val Test

Existing Models

SVM [24] 0.85 0.67 - - - - - - - - - -

RF [24] 0.80 0.62 - - - - - - - - - -

KNN [24] 0.75 0.62 - - - - - - - - - -

XGBoost [24] 0.70 0.59 - - - - - - - - - -

LGBM [24] 0.75 0.60 - - - - - - - - - -

XGBoost [39] - 0.93 - - - - - - - - - -

RF [32] 0.79 0.72 - - - - - - - - - -

DTrees [32] 0.77 0.70 - - - - - - - - - -

Proposed Models

RF-Table 4.2 - - 0.98 0.85 0.96 0.77 - - - - - -

RF-RFE 0.99 0.92 0.99 0.94 0.96 0.93 0.99 0.99 0.99 0.98 0.03 0.07

Table 4.4: Final RF Model Metrics Compared with Baseline Models and
State-Of-The-Art ML

Table 4.4 contrasts the final RF model’s performance with baseline mod-

els and other state-of-the-art machine learning techniques. All the metrics

are calculated using the optimal binary threshold, defined as the one that

maximizes the delta between true positive rate and false positive rate. For

the test set the threshold is 0.58, while for the validation set is 0.42.

74

The proposed RF model with Recursive Feature Elimination (RFE) out-

performed the baseline models significantly, particularly in generalization

metrics, with a balanced accuracy of 0.93 on the test set, coupled with a

96% on the validation set and optimal EER values.

4.3.2 Deep Learning

In this section are presented the results of the approaches based on deep

learning models, from the feature engineering phase to the final models.

Like for the traditional ML approach, even in this case the results con-

cerning specific components of feature engineering are presented as averages.

These averages include metrics, features, and classifiers for MobileNetV3,

and metrics, features, and layers for VGG16. Detailed results are provided

in the Appendix, specifically in Figures A.3 and A.4.

Furthermore it is important to note that due to the similarity of the

information provided by the equalized and not equalized scenarios, only the

latter will be adopted from this point on.

Extraction Interval

Figure 4.7 presents the results of the extraction interval’s impact using the

neural features-based approach. For VGG16 (Figure 4.7b), a peak vali-

dation performance was observed with a 1-second interval, which contrasts

with the traditional ML approach where a longer interval was favored. How-

ever, the 2-second interval demonstrated superior generalization capabilities

in this case. This trend is further supported by MobileNetV3 (Figure 4.7a),

where the 2-second interval not only exhibited better performance on the

test set but also matched the 1-second performance on the validation set.

Based on these findings, the 2-second interval was selected as the optimal

choice for feature extraction in the final models.

Feature Type

Comparing the performance of feature types in the “raw features” approach

(Figure 4.2) with the neural features-based approach (Figure 4.8) reveals

three key insights. First, the neural features-based approach generally en-

hances feature performance, improving both data learning and generaliza-

tion to unseen audio generative algorithms. However, this improvement

75

(a) (b)

Figure 4.7: Extraction Interval Impact with Varying Num. Samples Across
Intervals. Features Extracted Using: a) VGG16 with batch normalization,
b) MobileNetV3.

does not extend to MFCC features. This limitation may stem from the dis-

tribution of information within the MFCC image representation. As shown

in the top left image of Figure 4.9, potentially valuable information is con-

centrated in a small section at the top of the image, which the model might

not always capture e”ectively. To address this, introducing a 3D-Mapping

CNN, as detailed in Section 3.4.2, could provide the model with greater

flexibility in learning a more e”ective data representation. Despite this,

MFCC remains the best feature type for data learning.

The third point is that CQT features exhibit promising generalization

capabilities, suggesting that a combination of MFCC and CQT features

might o”er the optimal balance between high data learning performance

and strong generalization. The raw Mel Spectrogram was excluded from

this comparison due to its inferior generalization compared to CQT and

weaker data learning relative to MFCC, as seen in Figure 4.10.

76

(a)

(b)

Figure 4.8: Feature Type Performance with Varying Num. Samples Across
Intervals. Features Extracted Using: a) VGG16 with batch normalization,
b) MobileNetV3.

Hop and Window Length

To manage the computational demands of deep learning models, the impact

of hop and window lengths was evaluated exclusively using MobileNetV3,

which is less complex than other models. Instead of testing numerous com-

binations, the following were selected based on the findings of Küçükbay

et al. [41]: (512, 256), (1024, 512), (2048, 512), and (4096, 1024). Their

research demonstrated that a hop length of 50% of the window length gen-

erally yields good results, with a 25% hop length becoming more e”ective

77

Figure 4.9: MFCC and CQT Features Before and After Preprocessing.

as the window length increases. It is important to note that CQT automat-

ically adapt the window length to the frequency as illustrated in Section

2.3, therefore only the hop length was fixed.

Figure 4.10 shows that shorter window lengths tend to produce better

results on both the validation and test sets, particularly for MFCC and

CQT features. This suggests that higher temporal resolution, achieved with

shorter window lengths, enhances performance by providing more temporal

information. Consequently, final models utilized window and hop lengths

close to (512, 256).

In conclusion, hop and window lengths significantly influence the perfor-

mance of both ML and DL models in audio-related tasks, and their values

should be carefully optimized for each specific application.

78

Figure 4.10: Impact of Hop and Window Length (Reported on y-axis) on
MobileNetV3 Performance.

Models

In this section, we discuss the outcomes of the deep learning models from

the transfer learning phase through to the final models, focusing on both

learning and generalization capabilities.

Transfer Learning The transfer learning phase aimed to leverage the

pre-trained VGG16 and MobileNetV3 models in two ways: by extracting

features from di”erent layers and by fine-tuning the models.

VGG16 Layer Impact From the analysis depicted in Figure 4.11, it

is evident that layer 43 of the VGG16 model demonstrates the most con-

sistent learning performance across the validation and test sets. However,

as detailed in Figure A.4, the peak generalization performance, achieving

approximately 93% accuracy, was observed in layer 23 when using CQT fea-

tures. Interestingly, the best learning performance was achieved by layer 33.

These peaks in performance might be attributed to specific characteristics

of the dataset or the nature of the features being extracted, which could

favor certain layers over others under particular circumstances.

Given that the primary objective in this phase is to establish a stable

and balanced base model for further refinement (e.g., through 3D-Mapping

79

Figure 4.11: VGG16 Layers Impact on Performance.

Model Classifier Feature Interval (s) Goal
F1 (%) Bal Acc (%)

Val Test Val Test

MNETv3
SVM MFCC 2 Learning 98 60 96 70
CatBoost CQT 2 Generalizing 96 91 88 90

VGG16
RF MFCC 2 Learning 97 80 83 68
RF CQT 2 Generalizing 96 91 79 85

Table 4.5: DL Transfer Learning (Feature Extraction) Results

or feature combination), layer 43 was selected as the optimal compromise

between learning e!cacy and generalization capability.

Feature Extraction Table 4.5 compares the performance of VGG16

and MobileNetV3 during the feature extraction phase. Although VGG16

was only paired with the Random Forest classifier, and MobileNetV3 was

tested with various classifiers (including SVM, CatBoost, and XGBoost),

MobileNetV3 demonstrated superior performance overall, especially when

paired with CatBoost for generalization tasks.

Fine Tuning As discussed in Section 3.4.1, four di”erent MLP clas-

sifiers were tested for each feature type within MobileNetV3. The best-

performing classifier was selected for each feature: MLP3 for MFCC and

RMS, MLP4 for Mel Spectrogram, and MLP1 for CQT. However, due to the

significantly lower performance of the RMS and Mel Spectrogram features,

they are excluded from the subsequent analysis.

Table 4.6 presents the results of fine-tuning the VGG16 and MobileNetV3

80

Model Classifier Feature Epoch Goal
Bal Acc (%)

Train Val Test

Feature Extractor

MNETv3
SVM MFCC - Learning 98 96 70
CatBoost CQT - Generalizing 100 88 90

Fine Tuning

VGG16
RF CQT 6 - 99.97 98.11 85.21
RF MFCC 7 - 99.68 98.95 89.41

MNETv3
RF CQT 10 - 99.81 92.90 77.04
RF MFCC 11 - 99.42 97.18 70.63

Table 4.6: DL Transfer Learning (Fine Tuning) Results

models. Notably, when fine-tuned with a Random Forest classifier, the

VGG16 model achieved higher balanced accuracy on the test set compared

to MobileNetV3. This indicates that while MobileNetV3 serves as a strong

baseline, VGG16 may deliver superior results with additional optimization.

Quantitatively, the fine-tuned VGG16 model showed a considerable en-

hancement in performance, particularly when leveraging MFCC features.

This improvement highlighted the rich information contained within the

MFCC features, which VGG16 e”ectively learned during the fine-tuning

process. On the test set, the Balanced Accuracy (Bal Acc) surged by 21.41%

compared to the feature extraction phase, reaching a remarkable 89.41%.

This outcome, coupled with an impressive 98.95% Bal Acc on the validation

set, underscored the e”ectiveness of the fine-tuning process in significantly

boosting the model’s overall performance. These results strongly position

VGG16 as a leading candidate for the final model selection.

3-Channels Mapping The full results of the 3D mapping approach can

be found in the Appendix (Table B.1), with a summary of the best results

presented in Table 4.7.

The table highlights the top-performing configurations for each of the

two mapping methods (i.e., CNN and LUT) across two feature types (i.e.,

MFCC and CQT), along with the epochs at which these results were achieved.

When comparing these results with those obtained through transfer

learning (both feature extraction and fine-tuning), the following observa-

tions can be made:

81

Version Name Mapping Features Epoch
Bal Acc (%)

Train Val Test

64-128-3-learnable CNN MFCC 10 97.4 97.5 65.2
64x5-3x1-sigmoid CNN CQT 8 94.5 90.7 90.1
10-1.5-linear LUT MFCC 10 98.2 96.9 72.1
10-3-linear LUT CQT 7 97.8 94.8 92.1

Table 4.7: Best Results of Di”erent 3D Mapper Architectures with VGG16

• Model Flexibility and Training Accuracy: The increased model flexibil-

ity provided by the 3D mapping approach is reflected in the training

accuracy, which is noticeably lower compared to the fine-tuning case.

The reduction in training accuracy suggests that the model has access

to more complex patterns, potentially avoiding overfitting and capturing

more generalizable features.

• MFCC Performance: With the introduction of the mapping, the perfor-

mance of MFCC features showed a significant improvement—4.1% on the

test set and 13.9% on the validation set—compared to using the VGG16

model as a feature extractor (Table 4.5). It’s important to note that dif-

ferent classifiers were used: an MLP in the 3D mapping approach and a

Random Forest during the transfer learning phase. However, compared

to fine-tuning results (Table 4.6), MFCC’s performance with 3D mapping

was less impressive.

• CQT Performance: The results for CQT features reveal a di”erent trend.

The improvement over the feature extraction method was substantial,

but more notably, the generalization capability saw a significant boost.

The test accuracy increased from 85.21% in fine-tuning to 92.1% with 3D

mapping, demonstrating the potential of CQT features in this context.

In summary, the 3D mapping approach enhanced the overall model perfor-

mance, particularly for CQT features, which exhibited exceptional general-

ization capabilities. Conversely, fine-tuning was more beneficial for MFCC

features, significantly boosting performance compared to the feature extrac-

tion phase.

Given these promising results, the next section explores the combination

of these two approaches to further enhance the model’s performance.

82

Combining Fine Tuning and Mapping Table 4.8 presents the results

of integrating fine-tuning with mapping techniques in the VGG16 model.

This section explores the impact of this combination on model performance,

particularly in terms of learning capabilities and generalization.

The results clearly show that adding fine-tuning to the 3D mapping

approach led to significant improvements in the model’s ability to learn.

While this improvement in learning might have been expected, a notable

finding is that generalization also improved in most cases.

Previously, the best-performing model in terms of learning was a fine-

tuned model without any mapping, using CQT features. This model achieved

a balanced accuracy of 98.95% on the validation set (Table 4.6). How-

ever, its performance dropped on the test set, with a balanced accuracy

of 89.41%. On the other hand, the best model for generalization was one

using 3D mapping with CQT features, which reached a balanced accuracy

of 92.1% on the test set, while its validation performance was slightly lower

at 94.8% (Table 4.7). These results highlighted a trade-o” between learning

and generalization, depending on the model used.

However, when fine-tuning was combined with mapping, the model’s

performance improved significantly on both the validation and test sets.

The best model, using CQT features, surpassed the previous best CQT-

based model by 4.1% on the test set, achieving a balanced accuracy of

96.2%. Similarly, the validation set performance increased by 3.2%, reach-

ing a balanced accuracy of 98.0%. This improvement was also observed

with MFCC features, where the combined approach resulted in a balanced

accuracy of 91.9% on the test set and 98.0% on the validation set.

This indicates that combining fine-tuning with mapping is an e”ective

strategy for enhancing the model’s performance, not only in learning but

also in generalizing to new unseen audio deepfake generation algorithm.

Impact of Parameter Reduction Methods The combination of fine-

tuning and mapping significantly enhanced the model’s performance, partic-

ularly in terms of generalization, as demonstrated in the previous analysis.

The two top-performing models from this approach, highlighted in blue in

Table 4.8, were selected to assess the impact of parameter reduction meth-

ods on model performance.

Table 4.9 presents the results of this analysis, comparing the perfor-

mance of the two best models models (originally using flattening) with

83

Model Name Fine Mapping Features Epoch
Bal Acc (%)

Tuning Train Val Test

3-1-sigmoid No CNN MFCC 6 96.8 92.6 76.1
3-1-sigmoid Yes CNN MFCC 4 98.3 99.9 70.2

64x5-3x1-sigmoid No CNN CQT 8 94.5 90.7 90.1
64x5-3x1-sigmoid Yes CNN CQT 6 98.3 98.0 96.2

10-1.5-linear No LUT MFCC 10 98.2 96.9 72.1
10-1.5-linear Yes LUT MFCC 8 99.7 98.0 91.9

10-3-linear No LUT CQT 7 97.8 94.8 92.1
10-3-linear Yes LUT CQT 14 99.4 98.1 90.0

Table 4.8: Results of Combining Fine Tuning and Mapping with Di”erent
Architectures (VGG16)

alternative parameter reduction methods: global average pooling and

column-wise average pooling. Surprisingly, despite the significant re-

duction in parameters achieved through these methods, the models’ per-

formance remained relatively stable. In some instances, performance even

improved. For example, the model using CQT features with global average

pooling achieved a balanced accuracy of 97.3% on the test set, represent-

ing a 1.1% improvement over the flattening-based model. Another notable

improvement was observed in the model using MFCC features with column-

wise average pooling, which reached a balanced accuracy of 99.0% on the

validation set, surpassing the flattening-based model by 1.0%.

It’s important to note that in the flattening-based method, the first fully

connected layer was not trained to reduce complexity. This suggests that

further performance gains could potentially be achieved by training this

layer.

Among the parameter reduction methods, global average pooling proved

to be more e”ective in reducing the number of parameters while maintain-

ing performance. It performed comparably to column average pooling on

MFCC features and outperformed it on CQT features. Consequently, only

the global average pooling method was selected for the subsequent section,

where both feature types were combined using an ensemble approach.

This analysis indicates that strategic parameter reduction methods, par-

ticularly global average pooling, can maintain or even enhance model perfor-

mance while significantly reducing complexity, which is crucial for deploying

e!cient models in real-world applications.

84

Model Name Fine Features Epoch Version
Bal Acc (%)

Tuning Train Val Test

64x5-3x1-sigmoid Yes CQT 6 Flattening 98.3 98.0 96.2
64x5-3x1-sigmoid Yes CQT 8 Global 98.5 97.5 97.3
64x5-3x1-sigmoid Yes CQT 8 Column 97.9 98.5 94.0

10-1.5-linear Yes MFCC 8 Flattening 99.7 98.0 91.9
10-1.5-linear Yes MFCC 14 Global 99.8 98.8 90.2
10-1.5-linear Yes MFCC 8 Column 99.8 99.0 90.2

Table 4.9: Results of Fine Tuning and Mapping with Di”erent Parameters
Reduction Methods (VGG16)

Combining Features The results of the feature combination approach

are presented in Table 4.10. This analysis investigates the impact of com-

bining CQT and MFCC features on the model’s performance and compares

the performance of pre-trained classifiers with those trained specifically on

the combined feature set.

Overall, the results demonstrate that combining features can lead to sub-

stantial improvements in model performance, also when utilizing pre-trained

classifiers. The highest balanced accuracy on the test set was achieved

by the model using the Trained-classifier-weights with flattening, reaching

98.70%. This performance is slightly superior to the CQT-classifier-weights

with flattening, which achieved a test set accuracy of 98.68%. Both of

these models also performed exceptionally well on the validation set, with

balanced accuracies of 100% and 99.76%, respectively.

Interestingly, while the Global Average Pooling method performed well

with individual features, it did not perform as e”ectively with the combined

features. Specifically, the Trained-classifier-weights model using Global Av-

erage Pooling saw a drop in performance, achieving only 94.08% on the test

set, compared to 98.70% with flattening. This suggests that, while pooling

methods can reduce complexity and maintain performance with individual

features, they may not be as e”ective when features are combined, possibly

due to a loss of feature-specific information during the pooling process.

Another noteworthy observation is the MFCC-classifier-weights perfor-

mance with Global Average Pooling, which achieved a test accuracy of

98.51%. This indicates that the pre-trained MFCC classifier can e”ectively

generalize to the combined feature set, particularly when utilizing pooling

techniques. However, despite this strong performance, it still falls short of

the top-performing Trained-classifier-weights model with flattening, high-

85

Model Name Version Epoch
Bal Acc (%)

Train Val Test

CQT-classifier-weights Flattening 6 99.30 99.76 98.68
CQT-classifier-weights Global Avg Pooling 4 99.06 99.29 98.34

MFCC-classifier-weights Flattening 8 99.74 99.84 97.20
MFCC-classifier-weights Global Avg Pooling 6 99.15 99.29 98.51

Trained-classifier-weights Flattening 10 99.42 99.73 98.70
Trained-classifier-weights Global Avg Pooling 8 99.19 99.03 94.08

Table 4.10: Results of Multi-Feature Approach (Evaluated on a Subset of
the Full Evaluation Data)

lighting the benefit of training the classifier directly on the combined fea-

tures.

In conclusion, the combination of features, can enhance model perfor-

mance, with the best results observed using the Trained-classifier-weights

model with flattening. This latter was the unique model whose test learning

curve showed a clear learning trend, meaning the model is actually learning

how to generalize. The other models showed a wiggly test learning curve,

meaning the generalization is aleatory. Pooling methods may not always

preserve the full benefit of combining feature sets, as seen in the slight

performance drop with Global Average Pooling in the combined feature

context. However, considering the other two models, the pooling methods

results were impressive, particularly with the MFCC features where the

Global Average Pooling method achieved a test accuracy of 98.51%, sur-

passing the flattened model by 1.31% and placing itself only 0.19% below

the top-performing model.

Final Model Based on the previous sections, the best model identi-

fied was the one using trained classifier weights with a flattening layer.

Consequently, as explained in Section 3.4.5, the model was proposed in

three variants: DeepSpectraNet, DeepSpectraNetLite, and DeepSpectraNet-

Flex, trained and evaluated on the full dataset. A fourth model, Deep-

SpectraNetE2E, distinguished itself by taking as input the raw audio data,

but its performance is tackled in the next section. The results, as shown

in Table 4.11, indicate that training on the full dataset did not drastically

surpass the results obtained on smaller subsets, suggesting that the model

is e!cient at learning from a relatively small amount of data (less than 6%

86

Classifier
Acc F1 Bal Acc PR AUC ROC AUC EER

Val Test Val Test Val Test Val Test Val Test Val Test

Existing Models

TCN [24] 98.00 92.00 - - - - - - - - - -
STN [24] 89.00 80.00 - - - - - - - - - -
CNN Scatter [42] - 88.98 - - - - - - - - - -
DeepSonar [27] 99.98 - 99.98 - - - - - 99.98 - 0.02 -
VGG16 [32] 97.64 89.25 - - - - - - - - - -
VGG19 [32] 97.58 90.72 - - - - - - - - - -
MobileNet [32] 96.89 92.00 - - - - - - - - - -
CNN-BiLSTM [43] 97.82 - - - - - - - - - 0.03 -
MFAAN [44] - 94.47 - - - - - - - - - 0.79
VGG16 [45] 94.00 93.00 - - - - - - - - - -

Proposed Models

DeepSpectraNet 99.77 98.27 99.87 98.85 99.81 98.37 100 99.96 99.87 99.88 0.19 1.59
DeepSpectraNetLite 99.43 97.40 99.67 98.27 99.27 97.62 99.98 99.93 99.92 99.78 0.59 2.38
DeepSpectraNetFlex 99.89 97.58 99.94 98.41 99.91 96.16 100 99.82 99.99 99.55 0.07 3.23
DeepSpectraNetE2E 98.43 94.43 98.98 96.26 98.69 94.20 99.92 99.44 99.81 98.27 1.43 5.82

Table 4.11: Final DL model Metrics Compared with Baseline Models and
SOTA DL models (All the Values Are in %. Evaluation Done on The Full
Dataset)

of the full dataset).

Fully E2E Version The key challenge for the DeepSpectraNetE2E model

was achieving strong generalization. While it easily reached high accuracy

on the validation set, test performance was notably weaker, often falling

below 70%. This gap was due to the model’s extreme flexibility, which

allowed it to fit the training data very well (with 99.99% balanced accuracy

on validation) but hampered its ability to generalize.

Several architectures were explored, including fully DNN approaches

with 1D convolutions, but test results remained suboptimal. The intro-

duction of the Channel and Spatial Attention Module (CSAM) improved

the model’s learning process by directing attention to relevant features, en-

hancing generalization. The final DeepSpectraNetE2E achieved a balanced

accuracy of 98.69% on validation and 94.20% on the test set, with an EER

of 1.43%.

Analysis of Results The DeepSpectraNetFlex model, demonstrated

its higher flexibility with high results on the validation set, however this

this came at the expense of generalization, as reflected by a lower test set

balanced accuracy of 96.16%. A possible solution consists in removing some

training data, following a dropout inspired strategy, to prevent overfitting.

With this approach, the model reached a balanced accuracy of 97.92% on the

87

test set and 99.84% on the validation set at batch 540 (with a total of 17,280

samples). DeepSpectraNet, on the other hand, displayed a strong generaliza-

tion ability, achieving a balanced accuracy of 98.37% on the test set, while

maintaining robust performance on the validation set (99.81%). DeepSpec-

traNetLite, though designed for reduced complexity, still performed well,

albeit slightly behind DeepSpectraNet, achieving a balanced accuracy of

97.62% on the test set. DeepSpectraNetE2E is the worst performer, how-

ever considering the absence of the hand crafting process, the results are

promising.

Comparison with State-of-the-Art Models The proposed models,

particularly DeepSpectraNet and DeepSpectraNetFlex, demonstrate strong

performance when compared to state-of-the-art models in the literature,

though it’s essential to carefully consider the di”erences in evaluation method-

ologies across studies. In this project the reference metric is the balanced

accuracy for the reasons explained in Section 4.2.3. However in case of bal-

anced data, as in all the other studies, it is equivalent to the accuracy and

the comparison can be made directly.

TCN and STN, as reported by Khochare et al., were evaluated sepa-

rately on validation and test sets. TCN achieved a balanced accuracy of

98% on the validation set and 92% on the test set. Similarly, STN recorded

89% on the validation set and 80% on the test set. When compared to

these results, DeepSpectraNet outperformed TCN and STN both on the

validation and test sets, by 1.81% and 6.37%, respectively.

DeepSonar presents another point of comparison, but their evaluation

strategies introduce complications. These models have merged all the sets

in a single one, thus the training set contains the unseen TTS algorithm

from the test set. As a consequence the models were only tested for their

learning capabilities, thus the results can only be compared to the validation

set of the proposed models. DeepSonar, for instance, reports a validation

accuracy of 99.98% while DeepSpectraNetFlex, when evaluated under similar

conditions (validation set), achieved a balanced accuracy of 99.91%, only

0.07% below DeepSonar. Unfortunately a comparison with the test set is

not possible. DeepSonar surpasses DeepSpectraNetFlex in the EER metric,

with 0.02% against 0.07%, both can be considered excellent results.

VGG16 and VGG19, proposed by Reimao and Tzerpos, were evaluated

separately on the validation and test sets. VGG16 achieved a balanced

88

accuracy of 97.64% on the validation set and 89.25% on the test set, while

VGG19 reached 97.58% on validation and 90.72% on test. DeepSpectraNet

surpasses both in terms of generalization, with a test balanced accuracy of

98.37%, and outperforms them in learning with a validation balanced accu-

racy of 99.81%. These results are noteworthy, as VGG16 is an important

piece of the proposed model and this demonstrates the e”ectiveness of the

mapping and features combination strategies.

MobileNet, another model evaluated by Reimao and Tzerpos, achieved

a balanced accuracy of 96.89% on the validation set and 92.00% on the test

set. DeepSpectraNet exceeds these metrics on both validation and test sets,

further solidifying its status as a more e”ective model for both learning and

generalization.

Finally, CNN-BiLSTM reports a balanced accuracy of 97.82% but adopt

the same methodology as DeepSonar. Following the same reasoning we can

only compare the validation set results, where DeepSpectraNet outperforms

CNN-BiLSTM by 1.99%.

In summary, DeepSpectraNet and its variants, with a mention to Deep-

SpectraNetFlex for the learning capabilities and to DeepSpectraNetLite for

the optimal complexity-performance trade-o”, demonstrate competitive or

superior performance compared to state-of-the-art models. The rigorous

evaluation on separate validation and test sets, combined with the model’s

ability to maintain high performance under di”erent conditions, highlights

the robustness and e!cacy of the proposed approach.

Performance at Di!erent FPR Levels To provide further insights

into the model’s robustness, the ROC curve of DeepSpectraNet was magni-

fied to evaluate the true positive rate (TPR) at di”erent false positive rate

(FPR) levels. Figure 4.12 demonstrates that the model maintains a high

true positive rate (TPR) across various FPR thresholds, with a slight drop

at the lowest FPR level (0.001) more pronounced in the test set.

Complexity Analysis Table 4.12 provides a detailed overview of the

computational complexity associated with training the final models. The

total pure training time is split into two parts: the base submodels (focused

separately on CQT and MFCC features) and the end-to-end (E2E) phase.

It is important to note that the training times reported here exclude any

overhead, such as data loading or preprocessing, which can vary depending

89

Figure 4.12: ROC Curve Detail of DeepSpectraNet at Di”erent FPR Levels

on the computational environment. For context, the models were trained

using the Lightning.ai platform 3 on a 1 GPU L4 hardware setup.

In terms of training times, DeepSpectraNet required 7,130 seconds for

the base submodels and an additional 3,449 seconds for the E2E phase,

with the best performance achieved at the 10th epoch. The model includes

a total of 140,607,593 parameters, of which 8,394,754 were trained during

the E2E phase. Despite the substantial number of parameters, the model’s

training time reflects a balanced trade-o” between complexity and perfor-

mance, demonstrating the e!ciency of its architecture.

DeepSpectraNetLite was designed with a primary focus on reducing the

model’s memory usage and producing a lightweight, yet high-performing

architecture. While its training time might not seem drastically reduced

compared to other models, due to the unchanged VGG16 core, which is

inherently computationally demanding, the true advantage lies in the sig-

nificant reduction in the number of parameters. The model reduced the

total number of parameter by almost 80% compared to DeepSpectraNet, yet

providing high performance.

DeepSpectraNetFlex required 7,130 seconds for base training and 1,002

seconds for the E2E phase. Although it involved the highest number of

trainable parameters during E2E training (32,005,097), the model achieved

its best performance after just one epoch. This rapid convergence sug-

3
https://lightning.ai

90

https://lightning.ai

Model Best Epoch
Training Time (s) Number of Parameters

Base E2E Total E2E Trained

DeepSpectraNet 10 7130 3449 140 607 593 8 394 754
DeepSpectraNetLite 2 10 780 674 29 711 977 1026
DeepSpectraNetFlex 1 7130 1002 140 607 593 32 005 097
DeepSpectraNetE2E 4 8132 2956 140 800 055 32 197 559

Table 4.12: Final Models Training Time and Number of Parameters

gests that while DeepSpectraNetFlex is highly flexible and capable of fast

learning, it is also prone to overfitting, as evidenced by its relatively lower

performance on the test set compared to its validation results.

DeepSpectraNetE2E relies on DeepSpectraNetFlex as a base model thus

the base training time is 8,132 seconds. The E2E phase required 2,956

seconds, with the best performance achieved at the 4th epoch. Its total time

is comparable to the other models, despite its higher complexity. However

it is important to note that the number of training samples was slightly

smaller than the other models, due to the way the audio is preprocessed.

In summary, the DeepSpectraNetLite model presents an attractive option

for scenarios where computational resources are limited, o”ering competitive

performance with significantly reduced parameter count. Meanwhile, Deep-

SpectraNet and DeepSpectraNetFlex provide robust alternatives for more

resource-intensive applications, with the latter o”ering rapid convergence at

the potential cost of overfitting. DeepSpectraNetE2E is a promising model,

as it doesn’t require any hand-crafted feature extraction, but its general-

ization capabilities need further improvements. The choice of model should

thus be aligned with the specific goals and constraints of the application,

balancing the need for computational e!ciency and ease against the desired

level of model performance.

4.3.3 Overall Comparison

In this section there is a brief comparison between the traditional machine

learning and deep learning approaches.

Features Engineering

In both approaches, a 2-second extraction interval was identified as the opti-

mal choice, delivering the best performance on validation data and superior

generalization on test data, with the exception of the VGG16 model, where

91

a 1-second interval slightly outperformed. Regarding feature type selection,

MFCC consistently emerged as the most e”ective for data learning in both

approaches. However, the neural representation of CQT features demon-

strated remarkable learning and generalization capabilities. Overall, the

neural features-based approach improved feature performance.

Concerning window length, traditional ML approaches did not reveal

a definitive optimal value, as it varied depending on the model and fea-

ture type. In contrast, the deep learning approach favored shorter window

lengths, particularly for MFCC and CQT features. The impact of hop

length was assessed only in the ML approach and the di”erence between a

quarter and a half of the window length was found to be negligible.

Models

The comparison between the traditional Machine Learning (ML) approach

and the Deep Learning (DL) models in Table 4.13 clearly shows the superior

performance of the DL models.

The ML-based RF-RFE model delivered a solid test set balanced accu-

racy of 93.39%, with a slightly higher 95.64% on the validation set. These

results are strong, particularly for a model that is generally less complex and

more interpretable than deep learning models. However, the DL models,

especially DeepSpectraNet, significantly outperformed the RF-RFE model

across all metrics. DeepSpectraNet achieved a balanced accuracy of 98.37%

on the test set and 99.81% on the validation set. Its exceptional perfor-

mance is also reflected in its nearly perfect ROC AUC of 99.87% on the

test set. DeepSpectraNetLite o”ered a good balance between performance

and e!ciency. Despite a reduction in parameters, it still achieved a test

set balanced accuracy of 97.62%, slightly lower than DeepSpectraNet, but

with the added benefit of reduced model complexity. DeepSpectraNetFlex,

while highly adaptable, showed a tendency towards overfitting, achieving

a high balanced accuracy on the validation set (99.91%) but a lower score

on the test set (96.16%). DeepSpectraNetE2E demonstrated the potential

of an end-to-end approach, as it o”ers both a good performance and the

possibility to avoid the hand-crafted feature extraction process, which is a

time-consuming and case specific task.

In summary, DL models, particularly DeepSpectraNet, demonstrated

clear advantages over traditional ML approaches, excelling in both learning

and generalization.

92

Classifier
Acc F1 Bal Acc PR AUC ROC AUC EER

Val Test Val Test Val Test Val Test Val Test Val Test

Machine Learning

RF-RFE 98.49 91.65 99.13 94.23 95.64 93.39 99.92 99.35 99.59 97.94 2.65 7.20

Deep Learning

DeepSpectraNet 99.77 98.27 99.87 98.85 99.81 98.37 100 99.96 99.87 99.88 0.19 1.59

DeepSpectraNetLite 99.43 97.40 99.67 98.27 99.27 97.62 99.98 99.93 99.92 99.78 0.59 2.38

DeepSpectraNetFlex 99.89 97.58 99.94 98.41 99.91 96.16 100 99.82 99.99 99.55 0.07 3.23

DeepSpectraNetE2E 98.43 94.43 98.98 96.26 98.69 94.20 99.92 99.44 99.81 98.27 1.43 5.82

Table 4.13: Comparison of The Proposed Models Based on Traditional ML
and DL Approaches (All The Values Are in %. Evaluation Done on The
Full Dataset)

4.4 Explainability

In this section, the explainability of the final models is analyzed to pro-

vide insights into their decision-making processes. For the traditional ML

approach, the Random Forest (RF) model is examined, focusing on fea-

ture importance and feature behavior. For the deep learning approach,

the four models, DeepSpectraNet, DeepSpectraNetLite, DeepSpectraNetFlex,

and DeepSpectraNetE2E, are analyzed through confusion matrices, Mapper

analysis, with the addition of Grad-CAM for the former three models.

4.4.1 Traditional Machine Learning

The analysis of the final Random Forest (RF) model’s behavior and decision-

making process is critical for understanding how the model distinguishes

between real and fake data. The explainability analysis, focusing on fea-

ture importance and feature behavior, provides insights into the model’s

reasoning.

Most Important Features

The feature importance analysis (Figure 4.13) reveals that the model pri-

marily relies on MFCC (Mel-Frequency Cepstral Coe!cients) features, which

account for 61% of the overall importance. This dominance of MFCC fea-

tures confirms their suitability to audio classification tasks, as demonstrated

by other studies [46, 45]. RMS (Root Mean Square) features contribute 21%,

while CQT (Constant-Q Transform) features contribute 18%. This distri-

bution indicates that while MFCC is the most critical, the model also con-

93

Figure 4.13: Final RF model feature importance according to RFE

siders a combination of amplitude-related and frequency-related features to

make predictions. This multi-faceted approach likely enhances the model’s

robustness, especially when handling complex audio patterns.

In Figure 4.14, are presented the mean and variance across the data of

the most important features for each class. To ensure a fair comparison, the

features were normalized using the Max-Abs method, using the same max

value for both classes. The plot shows clear di”erences in the mean values

of these features between the real and fake classes. For instance, certain

MFCC coe!cients show distinct mean value separations between classes,

which likely helps the model in making accurate predictions. The RMS

features, which are related to the energy of the signal, also show variability,

contributing to the model’s ability to detect subtle di”erences in the audio

data. These findings show that the model’s decision-making is not based on

a single dominant feature but rather a combination of features that together

capture the complex characteristics of the data.

For sake of completeness, Figure 4.15, shows the top 3 MFCC values

over time compared to the waveform and mel spectrogram.

The RF model’s explainability analysis demonstrates that the model

leverages a combination of MFCC, RMS, and CQT features to distinguish

between real and fake audio data. The fact that the 18 out of 20 MFCCs

were retained through RFE, further supports the importance of these fea-

tures in the model’s decision-making process.

94

Figure 4.14: Final RF Model Most Important Features Mean and Variance

4.4.2 Deep Learning

This section examines the decision-making process and explainability of the

best DL models. We begin by analyzing the confusion matrix to evaluate

how well the model distinguishes between real and fake data. Next, we re-

view the model’s most significant errors to identify areas for improvement.

The Mapper analysis will then provide insight into the learned feature space

through the 3DMapper. Finally, the Grad-CAM analysis will visually high-

light the key areas of the input data that influence the model’s predictions,

o”ering a clear view of its focus during decision-making.

In the following sections the main focus is on the results of the Deep-

SpectraNet model, with a brief comparison with the other two models. All

the images and charts for these latter are made available in the Appendix.

Curves and Confusion Matrices

The objective of this section is to evaluate the performance of the Deep-

SpectraNet model using ROC and PR curves, which measure the model’s

ability to distinguish between real and fake audio data. Additionally, con-

fusion matrices are analyzed to give a more detailed look into classification

accuracy and errors.

Both the ROC and PR curves for DeepSpectraNet (Figure 4.16) indicate

near-perfect performance on the validation set and only a slight degradation

on the test set, where the PR AUC reached 99.96% and the ROC AUC

99.87%. These scores clearly demonstrate that the model is highly e”ective

95

Figure 4.15: Final RF Model MFCC Behavior on Waveform and Spectro-
gram

in discriminating between the two classes, with strong generalization across

both the validation and test datasets. A more granular view of the ROC

curve at di”erent false positive rates (FPR) is presented in Figure 4.12.

The confusion matrix (Figure 4.17) complements these metrics by of-

fering a closer look at classification performance. On the validation set,

DeepSpectraNet shows similar accuracy between both classes, though the

fake class has a slightly lower rate of false negatives (0.13%) compared to

the real class (0.24%). The test set results align with this trend, albeit with

slightly higher error rates: the fake class has 1.42% false positives, while the

percentage of false negatives is 1.82%.

Similar patterns are evident in the confusion matrices of the DeepSpec-

traNetLite (Figure C.2), DeepSpectraNetFlex (Figure C.4) and DeepSpec-

traNetE2E (Figure C.6) models. The only significant deviation occurs in

DeepSpectraNetFlex, which exhibits a higher proportion of false positives on

the test set.

In conclusion the ROC and PR curves demonstrate that DeepSpectraNet

performs remarkably well, especially on the validation set. Confusion ma-

trices reveal that although the model slightly struggles more with real data

96

(a)

(b)

Figure 4.16: ROC and PR curves of DeepSpectraNet on: a) Test Set, b)
Validation Set.

on the test set, it maintains a strong ability to classify both real and fake

audio data accurately.

Worst Errors

Understanding the model’s behavior further requires analyzing its worst

errors (samples that the model misclassified with the highest confidence).

The worst errors of the DeepSpectraNet model (Figure 4.18) revealed that

the top 15 errors on the validation set were all false negative, and the same

on the test set with 13 out of 15. This suggests that the model struggles

more with recognizing real audio data, sometimes confidently misclassifying

it as fake. This behavior highlights the subtle distinctions between real and

fake audio data.

97

Figure 4.17: Confusion Matrix of DeepSpectraNet

Figure 4.18: Worst Errors of DeepSpectraNet

Interestingly, a di”erent trend is observed in the worst errors of the Deep-

SpectraNetLite (Figure C.7) and DeepSpectraNetFlex (Figure C.8) models.

Specifically, in DeepSpectraNetFlex, 12 out of the 15 worst errors on the test

set were false positives, indicating a stronger tendency to misclassify fake

audio data as real.

This behavior variability should be considered when selecting the appro-

priate model for specific applications. For example, in content moderation

tasks where preventing the spread of AI-generated, potentially harmful con-

tent is critical, a model like DeepSpectraNet that is less prone to misclassify

fake data as real would be a more suitable choice.

In summary DeepSpectraNet tends to misclassify real data as fake with

high confidence, especially on the validation set, while DeepSpectraNetFlex

shows a higher rate of false positives, particularly on the test set. Deep-

SpectraNetE2E confirms the DeepSpectraNet behavior. This di”erence in

behavior can guide model selection based on the specific needs of the task

at hand, such as content moderation.

98

Mapper Analysis

This section examines how the Mapper enhances di”erent areas of the in-

put data, providing insights into the model’s feature extraction process,

independently for CQT and MFCC images.

(a). CQT Features Val Set (b). CQT Features Test Set

(c). MFCC Features Val Set (d). MFCC Features Test Set

Figure 4.19: DeepSpectraNet Mapper Output for a Random Fake Audio
Sample on Di”erent Evaluation Sets. (Mapper Input on the left, Mapper
Learned Output on the right).

CQT Image: Figure 4.19a shows the Mapper output for a randomly se-

lected fake audio sample from the validation set using the Constant-Q Trans-

form (CQT). Since the test set produced similar results (Figure 4.19b), we

focus on the validation set for the analysis.

In the output, the input’s visible wave-like elements are enhanced, with

each color channel emphasizing di”erent parts of the input. The red chan-

nel is concentrated on the upper portions of the white wave-like structures,

the green channel highlights the lower parts, and the blue channel empha-

sizes vertical structures. Remarkably, the model reveals new structures both

above and below the visible area that were not present in the original im-

age. This suggests the model is capable of extracting and enhancing hidden

features, leading to more informed decisions.

Interestingly, the behavior of other models di”ers. The DeepSpectraNet-

Flex model (Figure C.14) presents a more detailed learned image, indicating

99

its greater flexibility. In contrast, the DeepSpectraNetLite model (Figure

C.10) displays a di”erent color channel distribution. In this case, the red

channel dominates and captures vertical structures, the green channel cov-

ers the entire wave-like elements, while the blue channel is concentrated in

the middle of those elements, surrounded by the green channel.

MFCC Image: For the Mel-Frequency Cepstral Coe!cient (MFCC) im-

ages, the learned features are less detailed due to the lower flexibility of the

Lookup Table (LUT) mapping method, as opposed to the CNN-based mod-

els. However, the Mapper output still enhances the input image, revealing

new details not initially visible (Figures 4.19c and 4.19d).

When comparing the MFCC-based results across other models (Figures

in Appendix: C.12, C.16, C.17, and C.13), no significant di”erences were

observed, indicating a consistent behavior among the models for this feature

type.

In summary, the results showed the e!cacy of the Mapper in enhancing

the input data, feeding the model with more detailed and informative rep-

resentations. The CNN based Mapper used for the CQT images was able to

extract more detailed features, while the LUT based Mapper used for the

MFCC images was less flexible but still able to enhance the input data.

Fully E2E Features

Unlike previous models, the fully end-to-end model doesn’t rely on pre-

extracted features such as CQT or MFCC. Instead, it utilizes raw audio

data to compute a time-frequency representation through its Signal Prepro-

cessing Block, which is further enhanced by the Convolutional Block.

This section explores how the model processes and transforms these

features. Figures 4.20 and 4.21 depict the learned features at three key

stages: the initial spectrogram (input), the output of the Convolutional

Block (enhanced features), and the final representation after the 3D Mapper

(mapped features).

The most significant transformation occurs in the Convolutional Block,

where high-frequency content is enhanced, revealing new details not present

in the original spectrogram. The Mapper then refines these features, with

each RGB channel focusing on distinct areas, further sharpening the repre-

sentation for better classification performance.

In summary, the analysis suggest the high frequencies are crucial for the

100

model’s decision-making process, as it tends to focus on these areas during

feature learning.

Grad-CAM

Grad-CAM (Gradient-weighted Class Activation Mapping) is a visualiza-

tion technique that highlights the most important areas in the input data

influencing the model’s predictions. The goal of this analysis is to un-

derstand how feature combinations a”ect the decision-making process and

whether the “fakeness” of an audio sample is contained in smaller, more

subtle details.

For a correct understanding of the results, it is important to note that

the features images have a reverted y axis, with the lowest values at the

top and the highest at the bottom. For example, in the CQT images, the

lowest frequencies are at the top and the highest at the bottom.

What is the E!ect of Feature Combination? To investigate the e”ect

of feature combination, two Grad-CAM analyses were conducted: one by

separating the model into the two submodels (one for CQT and one for

MFCC), and another by using the combined model with combined features.

Comparing the Grad-CAM outputs from these approaches reveals which

features are crucial for the model’s decision-making process and provides

insight into whether the features are redundant or complementary.

The analysis was performed on a highly confident true fake sample.

In the validation set (Figure 4.22), notable di”erences emerged between

the separated and combined Grad-CAM outputs. The combined model

exhibited a broader focus, expanding its attention to higher frequencies and

time frames in the CQT map, while also concentrating on lower MFCC

coe!cients. This demonstrates that the model relies on both broad audio

characteristics (captured by lower MFCCs) and finer details. The fact that

both activation maps changed with the combined model suggests that the

features are complementary and jointly contribute to the decision-making

process.

In the test set (Figure 4.23), the model showed a stronger reliance on

CQT features as their activation map remained similar across combined

and separated approaches, with changes in the MFCC activation map. This

indicates that CQT features play a dominant role in the test set predictions.

However, MFCC features still provide valuable supplementary information,

101

Figure 4.20: DeepSpectraNetE2E Learned Features for Random Fake Audio
Sample (Validation Set)

102

Figure 4.21: DeepSpectraNetE2E Learned Features for Random Fake Audio
Sample (Test Set)

103

Figure 4.22: Grad-CAM Analysis of DeepSpectraNet on a Validation Set
Sample. Grad-CAM Combined refers to the combined model which takes
both MFCC and CQT features as input, while Grad-CAM Separated is
obtained splitting the combined model into two separate models, one for
each feature set.

allowing the model to refine its decision-making by shifting its attention

towards di”erent time frames and audio characteristics.

Interestingly, in both the validation and test sets, the model utilized

CQT to extract information from the beginning and end of the audio clip,

while MFCCs were used for the middle section. This behavior suggests that

the model e”ectively uses both features to capture distinct temporal details.

Is the Fakeness Contained in Small Details? It is reasonable to hy-

pothesize that the “fakeness” in audio data is captured within small, spe-

cific details, suggesting certain portions of the audio may be more likely

to reveal signs of artificial generation. To test this hypothesis, the sam-

ples were divided into four categories: True Positives (TP), True Negatives

(TN), False Positives (FP), and False Negatives (FN). From each cate-

gory, min(150, num samples in class) samples were randomly selected and

on them was calculated the average Grad-CAM activation, as well as the

number of highly activated pixels (defined as pixels with values greater than

0.6). These results are presented in Figures 4.24a, 4.24b, 4.25a, and 4.25b.

104

Figure 4.23: Grad-CAM Analysis of DeepSpectraNet on a Test Set Sam-
ple. Grad-CAM Combined refers to the combined model which takes both
MFCC and CQT features as input, while Grad-CAM Separated is obtained
splitting the combined model into two separate models, one for each feature
set.

(a) (b)

Figure 4.24: Average Grad-CAM of DeepSpectraNet on Validation Set Sub-
set splitted in TP (upper left), TN (lower left), FP (upper right), FN (lower
right) samples. a) Results for the CQT features, b) Results for the MFCC
features.

Contrary to the hypothesis, the results demonstrated that both the True

105

(a) (b)

Figure 4.25: Average Grad-CAM of DeepSpectraNet on Test Set Subset
splitted in TP (upper left), TN (lower left), FP (upper right), FN (lower
right) samples. a) Results for the CQT features, b) Results for the MFCC
features.

Positive and True Negative classes displayed a similar number of highly

activated pixels across all circumstances. This indicates that the fakeness

of audio is not exclusively contained in small details, but may be dispersed

across larger areas of the audio representation.

Further analysis revealed di”ering model behavior between real and fake

audio samples. In the validation set, when analyzing CQT features, the

model tended to focus on the upper part of the image for real audio (TP),

whereas for fake audio (TN), the focus shifted to the middle portion. This

suggests that the model identifies fakeness by analyzing higher frequencies

in the CQT representation, while certain lower-frequency bands are char-

acteristic of real audio. For MFCC features, the situation appears to be

reversed: the model emphasizes broader details (lower MFCC coe!cients)

in fake audio, while for real audio, it concentrates on finer details (higher

MFCC coe!cients). These observations were consistent in the test set as

well.

Notably, the DeepSpectraNetLite model provided distinct insights. As

highlighted earlier in the Mapper analysis, this model focuses on smaller,

more concentrated regions of the input. In this case, the number of highly

activated pixels in the TP class was roughly double that of the TN class,

supporting the idea that small, highly distinctive features play a significant

role in identifying fake audio.

106

In conclusion, while detecting fakeness does not necessarily require fo-

cusing exclusively on small details, these subtle cues do exist, and leveraging

them can enhance model performance. According to the results from Deep-

SpectraNetLite, these important details are primarily located in the higher

frequencies of CQT features and in mid-range MFCC coe!cients (between

15 and 50).

The Grad-CAM analysis provided valuable insights into the model’s

decision-making process. By analyzing the activation maps of individual

feature sets (MFCC and CQT) and their combined versions, it became clear

that the combination of features enabled the model to focus on a broader

range of audio characteristics. While CQT features were dominant in cer-

tain cases, MFCCs still played an essential role in enhancing the model

performance.

Additionally, the hypothesis that fakeness could be contained in small

details was partially supported. Although fakeness detection did not rely

solely on small details, models like DeepSpectraNetLite demonstrated a ten-

dency to focus on specific fine-grained features. This suggests that further

refinement of the model’s attention to such details could potentially improve

classification performance.

107

Chapter 5

Conclusions

Through comprehensive experimentation, this research has explored the

detection of audio deepfakes using traditional machine learning and deep

learning approaches. The study has contributed significantly to the field

by answering seven research questions (see Section 1.3) and by proposing

four novel deep learning models that substantially enhance audio deepfake

detection.

• RQ1: What are the preliminary factors that most influence cor-

rect deepfake detection?

The key factors influencing deepfake detection performance are the ex-

traction interval, window length, and hop length used for spectral feature

extraction. In both approaches, a 2-second extraction interval delivered

the best classification performance. While the optimal window length

was not definitive in traditional ML models, deep learning models con-

sistently favored shorter window lengths, especially for MFCC and CQT

features. The hop length impact di”erence between a quarter and a half

of the window length was found to be negligible on the ML approach.

• RQ2: What are the most important audio features for accu-

rately identifying deepfakes?

Among the audio features examined, MFCC and CQT stood out as the

most critical for accurately identifying deepfakes. MFCCs excelled in

learning performance, while CQT features demonstrated exceptional gen-

eralization to unseen algorithms, particularly when processed by deep

learning models.

• RQ3: How e!ective are traditional machine learning models in

detecting audio deepfakes?

108

Traditional ML models like RF, SVM, Catboost, and LR performed well

in learning, with Catboost achieving 99% balanced accuracy. However,

they struggled to generalize, particularly on unseen algorithm data, with

Logistic Regression reaching only 80%. RF proved to be the best all-

around performer, and further improvement was observed combining the

features and selecting the most relevant ones using Recursive Feature

Elimination, where RF achieved a balanced accuracy of 92% on the unseen

algorithm data.

• RQ4: Can deep learning models represent a leap forward in au-

dio deepfake detection?

The introduction of CNN-based architectures (VGG16 and MobileNetV3)

significantly improved performance compared to traditional ML mod-

els, especially in handling unseen algorithm data. The proposed fam-

ily of DeepSpectraNet models, leveraging combined MFCC and CQT

features enhanced by CNN-based mappings, achieved with its top per-

former, balanced accuracy of 99.81% on validation and 98.37% on un-

seen algorithm data. Furthermore, the fully end-to-end model, DeepSpec-

traNetE2E, reached 98.69% balanced accuracy on validation and 94.20%

on the test set, demonstrating the potential of automated feature extrac-

tion from raw audio.

• RQ5: How does feature combination impact the performance of

models in detecting audio deepfakes?

Combining multiple audio features had a clear positive impact on both

ML and DL models. MFCC and CQT, in particular, o”ered complemen-

tary strengths, with MFCC excelling in learning performance and CQT

showing superior generalization, especially in deep learning models.

• RQ6: How can the features be improved to enhance the detec-

tion of audio deepfakes?

The detection performance of standard audio features can be significantly

improved through feature combination, CNN-based mapping, and the

addition of a CNN + Attention based preprocessing module. The dual-

branch mapping strategy employed in DeepSpectraNet models demon-

strated that enabling the network to enhance di”erent aspects of the

features contributed to substantial gains in classification accuracy.

• RQ7: What do deep learning models focus on in their decision-

making process?

Explainability techniques such as Grad-CAM and Mapper Analysis re-

vealed that deep learning models primarily focus on frequency-related

information, capturing broad audio characteristics from lower MFCC co-

e!cients and finer details from higher frequencies in CQT.

The best models dynamically adjusted their focus based on the task at

hand, favoring MFCC for validation set data and CQT for test set data.

The lightweight DeepSpectraNetLite model was found to detect deepfake

artifacts by focusing on small details, suggesting that further refinement

in this area could enhance detection accuracy.

In conclusion, this thesis has advanced the field of audio deepfake detection

by automating feature extraction and proposing four novel models that sur-

pass existing ones in the literature. The DeepSpectraNet family of models,

with their feature mapping and enhancement strategies, o”ers high detec-

tion accuracy and strong generalization performance.

While the current models show promising results, further investigation

is required to enhance the generalization capabilities of the fully end-to-end

models, particularly for unseen deepfake generation techniques. Another

area for research is the evaluation of the models’ robustness against ad-

versarial attacks, which could potentially undermine their performance in

real-world scenarios. Additionally, optimizing computational e!ciency and

exploring lightweight models suitable for real-time detection in resource-

constrained environments will be key areas for future research. Finally, a

possible extension of this work could involve the integration of multimodal

features, combining audio and textual information, to provide the models

with a more comprehensive understanding of the context in which the audio

was generated.

Bibliography

[1] Yandex. Catboost enables fast gradient boosting on decision trees using

gpus, 12 2018. Accessed: 2024-17-10.

[2] Haifeng Wang and Teng Wu. Knowledge-enhanced deep learning for

wind-induced nonlinear structural dynamic analysis. Journal of Struc-

tural Engineering, 146, 11 2020.

[3] Sumit Saha, December 2018. Accessed: 2024-18-10.

[4] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David

Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-

erative adversarial nets. In Advances in neural information processing

systems, pages 2672–2680, 2014.

[5] Christoph Bregler, Michele Covell, and Malcolm Slaney. Video rewrite:

Driving visual speech with audio, 01 1997.

[6] Justus Thies, Michael Zollhöfer, Marc Stamminger, Christian

Theobalt, and Matthias Nießner. Face2face: Real-time face capture

and reenactment of rgb videos. In 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 2387–2395, 2016.

[7] Adrienne de Ruiter. The distinct wrong of deepfakes, December 2021.

[8] Ivan Perov, Daiheng Gao, Nikolay Chervoniy, Kunlin Liu, Sugasa

Marangonda, Chris Umé, Mr. Dpfks, Carl Shift Facenheim, Luis RP,

Jian Jiang, Sheng Zhang, Pingyu Wu, Bo Zhou, and Weiming Zhang.

Deepfacelab: Integrated, flexible and extensible face-swapping frame-

work, 2021.

[9] Yusheng Tian, Jingyu Li, and Tan Lee. Creating personalized synthetic

voices from articulation impaired speech using augmented reconstruc-

tion loss. In ICASSP 2024 - 2024 IEEE International Conference on

111

Acoustics, Speech and Signal Processing (ICASSP), pages 11501–11505,

2024.

[10] Rachel Gordon. 3 questions: What you need to know about audio

deepfakes, March 2024. Accessed: 2024-18-10.

[11] KnowledgeNile. Applications of deepfake technology: Positives and

dangers. Accessed: 2024-18-10.

[12] Zaynab Almutairi and Hebah Elgibreen. A review of modern audio

deepfake detection methods: Challenges and future directions. Algo-

rithms, 15(55):155, May 2022.

[13] Telegraph Reporters. “deepfake” video shows volodymyr zelensky

telling ukrainians to surrender. The Telegraph, March 2022.

[14] A.J. Hunt and A.W. Black. Unit selection in a concatenative speech

synthesis system using a large speech database. In 1996 IEEE Inter-

national Conference on Acoustics, Speech, and Signal Processing Con-

ference Proceedings, volume 1, pages 373–376 vol. 1, 1996.

[15] Heiga Zen, Andrew Senior, and Mike Schuster. Statistical parametric

speech synthesis using deep neural networks. In 2013 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing, page

7962–7966, Vancouver, BC, Canada, May 2013. IEEE.

[16] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,

Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and

Koray Kavukcuoglu. Wavenet: A generative model for raw audio, 2016.

[17] Mohammad Reza Hasanabadi. An overview of text-to-speech systems

and media applications, 2023.

[18] Zahra Khanjani, Gabrielle Watson, and Vandana P. Janeja. Audio

deepfakes: A survey. Frontiers in Big Data, 5, 2023.

[19] Jiangyan Yi, Chenglong Wang, Jianhua Tao, Xiaohui Zhang, Chu Yuan

Zhang, and Yan Zhao. Audio deepfake detection: A survey, 2023.

[20] Jiangyan Yi, Ye Bai, Jianhua Tao, Haoxin Ma, Zhengkun Tian, Chen-

glong Wang, Tao Wang, and Ruibo Fu. Half-truth: A partially fake

audio detection dataset, December 2023. arXiv:2104.03617 [cs, eess].

[21] Abhishek Dixit, Nirmal Kaur, and Sta”y Kingra. Review of audio

deepfake detection techniques: Issues and prospects. Expert Systems,

40(8):e13322, 2023.

[22] Clara Borrelli, Paolo Bestagini, Fabio Antonacci, Augusto Sarti, and

Stefano Tubaro. Synthetic speech detection through short-term and

long-term prediction traces. EURASIP Journal on Information Secu-

rity, 2021(1):2, April 2021.

[23] Massimiliano Todisco, Xin Wang, Ville Vestman, Md Sahidullah, Hec-

tor Delgado, Andreas Nautsch, Junichi Yamagishi, Nicholas Evans,

Tomi Kinnunen, and Kong Aik Lee. Asvspoof 2019: Future horizons

in spoofed and fake audio detection, 2019.

[24] Janavi Khochare, Chaitali Joshi, Bakul Yenarkar, Shraddha Suratkar,

and Faruk Kazi. A deep learning framework for audio deepfake detec-

tion. Arabian Journal for Science and Engineering, 47(3):3447–3458,

March 2022.

[25] Tianyun Liu, Diqun Yan, Rangding Wang, Nan Yan, and Gang Chen.

Identification of fake stereo audio using svm and cnn. Information,

12(7), 2021.

[26] Emily R. Bartusiak and Edward J. Delp. Frequency domain-based

detection of generated audio, 2022.

[27] Run Wang, Felix Juefei-Xu, Yihao Huang, Qing Guo, Xiaofei Xie, Lei

Ma, and Yang Liu. Deepsonar: Towards e”ective and robust detection

of ai-synthesized fake voices, 2020.

[28] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting

system. In Proceedings of the 22nd ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, volume 11 of KDD

’16, page 785–794. ACM, August 2016.

[29] Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. Catboost:

gradient boosting with categorical features support, 2018.

[30] Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev,

Anna Veronika Dorogush, and Andrey Gulin. Catboost: unbi-

ased boosting with categorical features, 2019.

[31] Kunihiko Fukushima. Neocognitron: A self-organizing neural network

model for a mechanism of pattern recognition una”ected by shift in

position. Biological Cybernetics, 36(4):193–202, April 1980.

[32] Ricardo Reimao and Vassilios Tzerpos. For: A dataset for synthetic

speech detection. In 2019 International Conference on Speech Tech-

nology and Human-Computer Dialogue (SpeD), page 1–10, Timisoara,

Romania, oct 2019. IEEE.

[33] Tomi Kinnunen, Md Sahidullah Sahidullah, Héctor Delgado, Massim-

iliano Todisco, Nicholas Evans, Junichi Yamagishi, and Kong Aik Lee.

The asvspoof 2017 challenge: Assessing the limits of replay spoofing

attack detection. In Proceedings of INTERSPEECH, 2017.

[34] Junichi Yamagishi, Xin Wang, Massimiliano Todisco, Md Sahidullah,

Jose Patino, Andreas Nautsch, Xuechen Liu, Kong Aik Lee, Tomi Kin-

nunen, Nicholas Evans, and Héctor Delgado. Asvspoof 2021: acceler-

ating progress in spoofed and deepfake speech detection, 2021.

[35] Jiangyan Yi, Ruibo Fu, Jianhua Tao, Shuai Nie, Haoxin Ma, Chenglong

Wang, Tao Wang, Zhengkun Tian, Xiaohui Zhang, Ye Bai, Cunhang

Fan, Shan Liang, Shiming Wang, Shuai Zhang, Xinrui Yan, Le Xu,

Zhengqi Wen, Haizhou Li, Zheng Lian, and Bin Liu. Add 2022: the

first audio deep synthesis detection challenge, 2024.

[36] Jiangyan Yi, Jianhua Tao, Ruibo Fu, Xinrui Yan, Chenglong Wang,

Tao Wang, Chu Yuan Zhang, Xiaohui Zhang, Yan Zhao, Yong Ren,

Le Xu, Junzuo Zhou, Hao Gu, Zhengqi Wen, Shan Liang, Zheng Lian,

Shuai Nie, and Haizhou Li. Add 2023: the second audio deepfake

detection challenge, 2023.

[37] Nicolas M. Müller, Pavel Czempin, Franziska Dieckmann, Adam Frogh-

yar, and Konstantin Böttinger. Does audio deepfake detection gener-

alize?, 2022.

[38] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward

Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,

and Adam Lerer. Automatic di”erentiation in pytorch. In NIPS-W,

2017.

[39] Farkhund Iqbal, Ahmed Abbasi, Abdul Rehman Javed, Zunera Jalil,

and Jamal Al-Karaki. Deepfake audio detection via feature engineering

and machine learning.

[40] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual.

CreateSpace, Scotts Valley, CA, 2009.

[41] Selver Ezgi Küçükbay, Adnan Yazıcı, and Sinan Kalkan. Hand-crafted

versus learned representations for audio event detection. Multimedia

Tools and Applications, 81(21):30911–30930, September 2022.

[42] Steven Camacho, Dora Maria Ballesteros, and Diego Renza. Fake

speech recognition using deep learning. In Juan Carlos Figueroa-

Garćıa, Yesid Dı́az-Gutierrez, Elvis Eduardo Gaona-Garćıa, and Al-

varo David Orjuela-Cañón, editors, Applied Computer Sciences in En-

gineering, pages 38–48, Cham, 2021. Springer International Publishing.

[43] Taiba Majid Wani, Syed Asif Ahmad Qadri, Danilo Comminiello, and

Irene Amerini. Detecting audio deepfakes: Integrating cnn and bilstm

with multi-feature concatenation, 2024.

[44] Karthik Sivarama Krishnan and Koushik Sivarama Krishnan. Mfaan:

Unveiling audio deepfakes with a multi-feature authenticity network.

In 2023 9th International Conference on Signal Processing and Com-

munication (ICSC). IEEE, December 2023.

[45] Ameer Hamza, Abdul Rehman Javed, Farkhud Iqbal, Natalia Kryvin-

ska, Ahmad Almadhor, Zunera Jalil, and Rouba Borghol. Deepfake

audio detection via mfcc features using machine learning. IEEE Ac-

cess, PP:1–1, 01 2022.

[46] Fawziya M. Rammo and Mohammed N. Al-Hamdani. Detecting the

speaker language using cnn deep learning algorithm. Iraqi Journal For

Computer Science and Mathematics, 3(1):43–52, Jan. 2022.

Appendix A

Feature Engineering

Supplementary Results

116

Figure A.1: Results of all the combinations of extraction intervals, feature
types and models of the traditional ML approach, evaluated with 2 metrics
on the three sets (train, test and validation). The num. samples is equalized
across intervals. On y-axis, the extraction interval is shown.

Figure A.2: Results of all the combinations of extraction intervals, feature
types and models of the traditional ML approach, evaluated with 2 metrics
on the three sets (train, test and validation). The num. samples is not
equalized across intervals. On y-axis, the extraction interval is shown.

Figure A.3: Results of all the combinations of extraction intervals, feature
types and models of the neural features approach based on MobileNetV3.
The evaluation is made with 2 metrics on the three sets (train, test and
validation). The images are normalized as illustrated in Listing 3.1. On
y-axis, the extraction interval is shown.

Figure A.4: Results of all the combinations of extraction intervals, feature
types and models of the neural features approach based in VGG16. The
evaluation is made with 2 metrics on the three sets (train, test and valida-
tion). The images are normalized as illustrated in Listing 3.1. On y-axis,
the extraction interval is shown.

Appendix B

Models Supplementary Results

1 class Mapper3D(nn.Module):

2 def __init__(self):

3 super(Mapper3D , self).__init__ ()

4 self.conv1 = nn.Conv2d(in_channels =1,

out_channels =64, kernel_size =1)

5 self.bn1 = nn.BatchNorm2d (64)

6 self.conv2 = nn.Conv2d(in_channels =64,

out_channels =128, kernel_size =1)

7 self.bn2 = nn.BatchNorm2d (128)

8 self.conv3 = nn.Conv2d(in_channels =128,

out_channels =3, kernel_size =1)

9 self.bn3 = nn.BatchNorm2d (3)

10 self.upsample = nn.Upsample(scale_factor =2,

mode=’bilinear ’, align_corners=True)

11

12 def forward(self , x): # Input: (B, 1, 112, 112)

13 x = F.relu(self.bn1(self.conv1(x))) # (B, 64,

112, 112)

14 x = F.relu(self.bn2(self.conv2(x))) # (B, 128,

112, 112)

15 x = self.bn3(self.conv3(x)) # (B, 3, 112, 112)

16 x = torch.sigmoid(x) # scale to [0, 1]

17 x = self.upsample(x) # (B, 3, 224, 224)

18 x = x * 255.0 # scale to [0, 255]

19 return x

Listing B.1: 3D Mapper CNN Implementation (64-128-3-sigmoid)

1 class Mapper3D(nn.Module):

2 def __init__(self):

3 super(Mapper3D , self).__init__ ()

121

4 self.conv1 = nn.Conv2d(in_channels =1,

out_channels =64, kernel_size =1)

5 self.bn1 = nn.BatchNorm2d (64)

6 self.conv2 = nn.Conv2d(in_channels =64,

out_channels =128, kernel_size =1)

7 self.bn2 = nn.BatchNorm2d (128)

8 self.conv3 = nn.Conv2d(in_channels =128,

out_channels =3, kernel_size =1)

9 self.bn3 = nn.BatchNorm2d (3)

10 self.upsample = nn.Upsample(scale_factor =2,

mode=’bilinear ’, align_corners=True)

11 self.scale = nn.Parameter(torch.ones(1, 3, 1,

1)) # Learnable scale factor

12 self.shift = nn.Parameter(torch.zeros(1, 3, 1,

1)) # Learnable shift factor

13

14 def forward(self , x): # Input: (B, 1, 112, 112)

15 x = F.relu(self.bn1(self.conv1(x))) # (B, 64,

112, 112)

16 x = F.relu(self.bn2(self.conv2(x))) # (B, 128,

112, 112)

17 x = self.bn3(self.conv3(x)) # (B, 3, 112, 112)

18 x = self.scale * x + self.shift # (B, 3, 112,

112)

19 x = torch.sigmoid(x) # scale to [0, 1]

20 x = self.upsample(x) # (B, 3, 224, 224)

21 x = x * 255.0 # scale to [0, 255]

22 return x

Listing B.2: 3D Mapper CNN Implementation (64-128-3-learnable)

1 class Mapper3D(nn.Module):

2 def __init__(self):

3 super(Mapper3D , self).__init__ ()

4 self.conv1 = nn.Conv2d(in_channels =1,

out_channels =64, kernel_size =1)

5 self.bn1 = nn.BatchNorm2d (64)

6 self.conv2 = nn.Conv2d(in_channels =64,

out_channels =128, kernel_size =1)

7 self.bn2 = nn.BatchNorm2d (128)

8 self.conv3 = nn.Conv2d(in_channels =128,

out_channels =3, kernel_size =1)

9 self.bn3 = nn.BatchNorm2d (3)

10 self.upsample = nn.Upsample(scale_factor =2,

mode=’bilinear ’, align_corners=True)

11

12 def forward(self , x): # Input: (B, 1, 112, 112)

13 x = F.relu(self.bn1(self.conv1(x))) # (B, 64,

112, 112)

14 x = F.relu(self.bn2(self.conv2(x))) # (B, 128,

112, 112)

15 x = self.bn3(self.conv3(x)) # (B, 3, 112, 112)

16 x = self.upsample(x) # (B, 3, 224, 224)

17 return x

Listing B.3: 3D Mapper CNN Implementation (64-128-3-none)

1 class Mapper3D(nn.Module):

2 def __init__(self):

3 super(Mapper3D , self).__init__ ()

4 self.conv1 = nn.Conv2d(in_channels =1,

out_channels =64, kernel_size =5, padding =2)

5 self.bn1 = nn.BatchNorm2d (64)

6 self.conv2 = nn.Conv2d(in_channels =64,

out_channels =3, kernel_size =1)

7 self.bn2 = nn.BatchNorm2d (3)

8 self.upsample = nn.Upsample(scale_factor =2,

mode=’bilinear ’, align_corners=True)

9

10 def forward(self , x): # Input: (B, 1, 112, 112)

11 x = F.relu(self.bn1(self.conv1(x))) # (B, 64,

112, 112)

12 x = F.relu(self.bn2(self.conv2(x))) # (B, 3,

112, 112)

13 x = torch.sigmoid(x) # scale to [0, 1]

14 x = self.upsample(x) # (B, 3, 224, 224)

15 x = x * 255.0 # scale to [0, 255]

16 return x

Listing B.4: 3D Mapper CNN Implementation (64x5-3x1-sigmoid)

1 class Mapper3D(nn.Module):

2 def __init__(self):

3 super(Mapper3D , self).__init__ ()

4 self.conv1 = nn.Conv2d(in_channels =1,

out_channels =3, kernel_size =1)

5 self.bn1 = nn.BatchNorm2d (3)

6 self.upsample = nn.Upsample(scale_factor =2,

mode=’bilinear ’, align_corners=True)

7

8 def forward(self , x): # Input: (B, 1, 112, 112)

9 x = F.relu(self.bn1(self.conv1(x))) # (B, 3,

112, 112)

10 x = torch.sigmoid(x) # scale to [0, 1]

11 x = self.upsample(x) # (B, 3, 224, 224)

12 x = x * 255.0 # scale to [0, 255]

13 return x

Listing B.5: 3D Mapper CNN Implementation (3-1-sigmoid)

Model Name Mapping Features Epoch
Bal Acc (%)

Train Val Test

64-128-3-sigmoid CNN CQT 7 95.1 91.9 88.3
64-128-3-sigmoid CNN MFCC 10 98.1 97.7 59.5
64-128-3-learnable CNN CQT 9 98.9 96.6 89.3
64-128-3-learnable CNN MFCC 10 97.4 97.5 65.2
64-128-3-none CNN CQT 8 97.9 96.8 78.7
64-128-3-none CNN MFCC 10 98.6 96.3 63.3
64x5-3x1-sigmoid CNN CQT 8 94.5 90.7 90.1
64x5-3x1-sigmoid CNN MFCC 7 97.8 97.7 55.3
3-1-sigmoid CNN CQT 8 97.1 95.8 86.5
3-1-sigmoid CNN MFCC 6 96.8 92.6 76.1
5-3-random LUT CQT 9 98.2 96.9 83.5
5-3-random LUT MFCC 7 97.4 94.7 66.6
10-3-random LUT CQT 7 97.4 95.5 84.2
10-3-random LUT MFCC 8 98.2 93.4 67.1
20-3-random LUT CQT 10 97.4 96.3 74.5
20-3-random LUT MFCC 7 95.7 93.4 56.2
40-3-random LUT CQT 9 97.7 93.9 81.9
40-3-random LUT MFCC 5 93.4 91.1 64.5
10-3-linear LUT CQT 7 97.8 94.8 92.1
10-3-linear LUT MFCC 9 97.3 95.9 61.3
10-1.5-linear LUT CQT 8 96.4 94.7 88.9
10-1.5-linear LUT MFCC 10 98.2 96.9 72.1

Table B.1: Results of All Tested 3D Mapper Configurations and Features

Figure B.1: Results of traditional ML, concatenating all the features (20
per type) including mel-spectrogram and reduced to 20, 30, 40, 80 and 100
features using RFE.

Figure B.2: Results of traditional ML, concatenating all the features (20
per type) excluding mel-spectrogram and reduced to 20, 30, 40, 80 and 100
features using RFE.

Figure B.3: Results of traditional ML, concatenating all the features (40
per type) excluding mel-spectrogram and reduced to 20, 30, 40, 80 and 100
features using RFE.

Appendix C

Explainability Supplementary

Results

128

(a)

(b)

Figure C.1: ROC and PR curves of DeepSpectraNetLite on: a) Validation
Set, b) Test Set.

Figure C.2: Confusion Matrix of DeepSpectraNetLite

(a)

(b)

Figure C.3: ROC and PR curves of DeepSpectraNetFlex on: a) Validation
Set, b) Test Set.

Figure C.4: Confusion Matrix of DeepSpectraNetFlex

(a)

(b)

Figure C.5: ROC and PR curves of DeepSpectraNetE2E on: a) Validation
Set, b) Test Set.

Figure C.6: Confusion Matrix of DeepSpectraNetE2E

Figure C.7: Worst Errors of DeepSpectraNetLite

Figure C.8: Worst Errors of DeepSpectraNetFlex

Figure C.9: Worst Errors of DeepSpectraNetE2E

Figure C.10: DeepSpectraNetLite Mapper Output for a Random CQT Fake
Audio Sample (Validation Set)

Figure C.11: DeepSpectraNetLite Mapper Output for a Random CQT Fake
Audio Sample (Test Set)

Figure C.12: DeepSpectraNetLite Mapper Output for a Random MFCC
Fake Audio Sample (Validation Set)

Figure C.13: DeepSpectraNetLite Mapper Output for a Random MFCC
Fake Audio Sample (Test Set)

Figure C.14: DeepSpectraNetFlex Mapper Output for a Random CQT Fake
Audio Sample (Validation Set)

Figure C.15: DeepSpectraNetFlex Mapper Output for a Random CQT Fake
Audio Sample (Test Set)

Figure C.16: DeepSpectraNetFlex Mapper Output for a Random MFCC
Fake Audio Sample (Validation Set)

Figure C.17: DeepSpectraNetFlex Mapper Output for a Random MFCC
Fake Audio Sample (Test Set)

Figure C.18: Grad-CAM Analysis of DeepSpectraNetLite on a Test Set
Sample. Grad-CAM Combined refers to the combined model which takes
both MFCC and CQT features as input, while Grad-CAM Separated is
obtained splitting the combined model into two separate models, one for
each feature set.

Figure C.19: Grad-CAM Analysis of DeepSpectraNetLite on a Validation
Set Sample. Grad-CAM Combined refers to the combined model which
takes both MFCC and CQT features as input, while Grad-CAM Separated
is obtained splitting the combined model into two separate models, one for
each feature set.

Figure C.20: Grad-CAM Analysis of DeepSpectraNetFlex on a Test Set
Sample. Grad-CAM Combined refers to the combined model which takes
both MFCC and CQT features as input, while Grad-CAM Separated is
obtained splitting the combined model into two separate models, one for
each feature set.

Figure C.21: Grad-CAM Analysis of DeepSpectraNetFlex on a Validation
Set Sample. Grad-CAM Combined refers to the combined model which
takes both MFCC and CQT features as input, while Grad-CAM Separated
is obtained splitting the combined model into two separate models, one for
each feature set.

(a) (b)

Figure C.22: Average Grad-CAM of DeepSpectraNetLite on Validation Set
Subset splitted in TP (upper left), TN (lower left), FP (upper right), FN
(lower right) samples. a) Results for the CQT features, b) Results for the
MFCC features.

(a) (b)

Figure C.23: Average Grad-CAM of DeepSpectraNetLite on Test Set Subset
splitted in TP (upper left), TN (lower left), FP (upper right), FN (lower
right) samples. a) Results for the CQT features, b) Results for the MFCC
features.

(a) (b)

Figure C.24: Average Grad-CAM of DeepSpectraNetFlex on Validation Set
Subset splitted in TP (upper left), TN (lower left), FP (upper right), FN
(lower right) samples. a) Results for the CQT features, b) Results for the
MFCC features.

(a) (b)

Figure C.25: Average Grad-CAM of DeepSpectraNetFlex on Test Set Sub-
set splitted in TP (upper left), TN (lower left), FP (upper right), FN (lower
right) samples. a) Results for the CQT features, b) Results for the MFCC
features.

	Introduction
	Context
	What are DeepFakes?
	History of DeepFakes

	Research Rationale
	DeepFakes Applications

	Research Questions
	Thesis Outline

	Background
	Audio DeepFakes Typologies
	Text-to-Speech (TTS)
	Voice Conversion (VC)
	Partially Fake Audios
	Replay Attack

	DeepFake Detection Methods
	Signal Processing Methods
	Traditional Machine Learning Methods
	Deep Learning Methods

	Audio Features
	Machine Learning Models
	Traditional Models
	Deep Learning Models

	Methods and Experiments
	Dataset
	Dataset Selection
	Dataset Preprocessing

	Feature Engineering
	Feature Extraction Hyperparameters
	Extraction Details

	ML Models
	Base Models
	Features Reduction (RFE)

	DL Models
	Transfer Learning
	3-Channels Mapping
	Combining Fine-Tuning and Mapping
	Combining Features
	Final Model
	Fully E2E Version

	Results and Explainability
	Experimental Setup
	Local Machine
	Lightning AI Cloud

	Evaluation Metrics
	Accuracy
	Balanced Accuracy
	F1 Score
	PR AUC
	ROC AUC
	Equal Error Rate (EER)

	Results
	Traditional Machine Learning
	Deep Learning
	Overall Comparison

	Explainability
	Traditional Machine Learning
	Deep Learning

	Conclusions
	Feature Engineering Supplementary Results
	Models Supplementary Results
	Explainability Supplementary Results

