UNIVERSITA
DI PAVIA

UNIVERSITY OF PAVIA
FACULTY OF ENGINEERING
DEPARTMENT OF ELECTRICAL, COMPUTER AND BIOMEDICAL ENGINEERING

MASTER’S DEGREE IN COMPUTER ENGINEERING

MASTER THESIS

Automated Feature Mapping for Audio DeepFake Detection

Mappatura Automatica delle Features per il Rilevamento di
DeepFake Audio

Candidate: Andrea Alberti

Supervisor: Prof. Claudio Cusano

AY. 2023/2024

“A chi mi ha mostrato che con determinazione e cuore,

ogni traguardo e possibile.”

Abstract

The proliferation of audio deepfake technology poses significant challenges
to cybersecurity, privacy, and trust. Generated using advanced artificial
intelligence techniques, audio deepfakes can imitate human speech with re-
markable accuracy, leading to potential abuses such as identity theft, fraud,
and disinformation. Detecting such synthetic audio has become critically
important as these technologies continue to evolve.

This thesis explores audio deepfake detection by proposing novel Ma-
chine Learning (ML) and Deep Learning (DL) approaches, with a primary
focus on improving feature extraction and automating the feature map-
ping process. A comprehensive analysis of various audio features, such as
Mel-spectrograms, MFCC (Mel-Frequency Cepstral Coefficients), and CQT
(Constant-Q Transform), among others, is conducted, enhancing their effec-
tiveness through the use of CNNs. Additionally, a fully end-to-end approach
(DeepSpectraNetE2E) is proposed, allowing the model to autonomously
learn time-frequency representations directly from raw audio, thus automat-
ing the entire feature extraction process.

Alongside DeepSpectraNet E2E, three other models (DeepSpectraNet, Deep-
SpectraNetFlex, and DeepSpectraNetLite) are introduced, all of which sur-
pass existing models in the literature. Experimental results demonstrate
that these deep learning models significantly outperform traditional ma-
chine learning models in terms of accuracy and generalization. The results
also highlight the effectiveness of combining multiple audio features and
using CNN-based feature mapping strategies to enhance frequency-related
information within the signal.

This work contributes to audio deepfake detection by proposing four
new models that improve accuracy and generalize better in the detection of
sophisticated synthetic audio by providing novel mapping strategies along

with automated feature extraction.

Sommario

La proliferazione della tecnologia dei deepfake audio pone sfide significative
alla sicurezza informatica, alla privacy e alla fiducia. Generati utilizzando
tecniche avanzate di intelligenza artificiale, i deepfake audio possono imitare
il parlato umano con notevole accuratezza, portando a potenziali abusi come
furto d’identita, frodi e disinformazione. La rilevazione di tali audio sintetici
e diventata di importanza critica poiché queste tecnologie continuano a
evolversi.

Questa tesi esplora la rilevazione dei deepfake audio proponendo nuovi
approcci di Machine Learning (ML) e Deep Learning (DL), con un focus
principale sul miglioramento dell’estrazione delle features e sull’automazione
del mappaggio delle stesse viene condotta un’analisi completa su diverse fea-
tures audio, come spettrogrammi di Mel, MFCC (Mel-Frequency Cepstral
Coefficients) e CQT (Constant-Q Transform), tra le altre, aumentandone
lefficacia attraverso I'uso di CNN. Inoltre, viene proposto un approccio
completamente end-to-end (DeepSpectraNetE2E), che permette al modello
di apprendere autonomamente le rappresentazioni tempo-frequenza diretta-
mente dall’audio grezzo, automatizzando cosi I'intero processo di estrazione
delle features.

Oltre a DeepSpectraNetE2E, vengono introdotti altri tre modelli (Deep-
SpectraNet, DeepSpectraNetFlex, e DeepSpectraNetLite), che superano i mod-
elli esistenti in letteratura. I risultati sperimentali dimostrano come questi
modelli di deep learning superino significativamente i modelli tradizionali
di machine learning in termini di accuratezza e generalizzazione. I risultati,
inoltre, evidenziano l'efficacia della combinazione di piu features audio e
dell’'uso di strategie di mappaggio delle features basate su reti neurali con-
voluzionali (CNN) che aumentino le informazioni relative alle frequenze del
segnale.

In conclusione, questo lavoro contribuisce al campo della rilevazione dei
deepfake audio proponendo quattro nuovi modelli che, grazie a strategie
di mappaggio innovative e all’automazione dell’estrazione delle features,
migliorano l'accuratezza e la generalizzazione nella rilevazione di sofisticati

audio sintetici.

Contents

1 Introduction

1.1

1.2

1.3
1.4

2.1

2.2

2.3
24

3.1

3.2

Context
1.1.1 What are DeepFakes?
1.1.2 History of DeepFakes
Research Rationale
1.2.1 DeepFakes Applications
Research Questions
Thesis Outline

Background

Audio DeepFakes Typologies
2.1.1 Text-to-Speech (TTS)
2.1.2 Voice Conversion (VC)
2.1.3 Partially Fake Audios
2.1.4 Replay Attack
DeepFake Detection Methods
2.2.1 Signal Processing Methods
2.2.2 Traditional Machine Learning Methods
2.2.3 Deep Learning Methods
Audio Featureso
Machine Learning Models
2.4.1 Traditional Models
2.4.2 Deep Learning Models

Methods and Experiments

Dataset
3.1.1 Dataset Selection
3.1.2 Dataset Preprocessing

Feature Engineering

o O Ut =W NN = -

10
10
10
13
13
14
14
15
15
16
17
21
21
30

3.2.1 Feature Extraction Hyperparameters
3.2.2 Extraction Details
3.3 ML Models
331 BaseModels
3.3.2 Features Reduction (RFE)
34 DL Models.
3.4.1 Transfer Learning
3.4.2 3-Channels Mapping
3.4.3 Combining Fine-Tuning and Mapping
3.4.4 Combining Features
3.4.5 Final Modelo
3.4.6 Fully E2E Version.

Results and Explainability

4.1 Experimental Setupo
4.1.1 Local Machine.
4.1.2 Lightning AICloud

4.2 Evaluation Metrics oL
4.2.1 Accuracy
4.2.2 Balanced Accuracy L.
423 FlScore
424 PRAUC.
425 ROCAUC.
42.6 Equal Error Rate (EER)

4.3 Results.
4.3.1 'Traditional Machine Learning
4.3.2 Deep Learning 0oL
4.3.3 Overall Comparison

4.4 Explainability oo o
4.4.1 'Traditional Machine Learning
4.42 Deep Learning oL

Conclusions
Feature Engineering Supplementary Results
Models Supplementary Results

Explainability Supplementary Results

108

116

121

128

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6

4.1

4.2

4.3

4.4
4.5
4.6
4.7

Timeline of DeepFake Technology 3
Support Vector Machines Hyperplane Selection 23
[Nlustration of the Kernel Trick in SVM 25
Random Forest Visualization. 26
CatBoost Algorithm - Sourced from [1] 29
Multilayer Perceptron Architecture - Sourced from [2] 31
Convolutional Neural Network Architecture - Sourced from [3] 33

Neural Features Extraction Process 45
3D Mapper Implementation Schema 52
3D Mapper Look-Up Table Schema 53
3D Mapper Schema with Parameters Reduction 56
Ensemble DL Model Schema 56
Fully E2E Model Additional Preprocessing Module 59
Avg Extraction Interval Impact Across Models: a) equalized

num. samples across intervals, b) varying num. samples
across intervals. Lo 67
Avg Feature Type Performance Across Models: a) equalized
num. samples across intervals , b) varying num. samples
across intervals. Lo 68

Impact of hop (y-axis) and window length on: a) Random

Forest performance, b) SVM performance. 70
Final RF Model Curves for Test Set 73
Final RF Model Curves for Validation Set 73
Final RF Model Confusion Matrix 74

Extraction Interval Impact with Varying Num. Samples Across
Intervals. Features Extracted Using: a) VGG16 with batch
normalization, b) MobileNetV3. 76

1ii

4.8 Feature Type Performance with Varying Num. Samples Across
Intervals. Features Extracted Using: a) VGG16 with batch
normalization, b) MobileNetV3. 7

4.9 MFCC and CQT Features Before and After Preprocessing. . 78
4.10 Impact of Hop and Window Length (Reported on y-axis) on

MobileNetV3 Performance. 79
4.11 VGG16 Layers Impact on Performance. 80
4.12 ROC Curve Detail of DeepSpectraNet at Different FPR Levels 90
4.13 Final RF model feature importance according to RFE 94

4.14 Final RF Model Most Important Features Mean and Variance 95
4.15 Final RF Model MFCC Behavior on Waveform and Spectro-

82 10 96
4.16 ROC and PR curves of DeepSpectraNet on: a) Test Set, b)

Validation Set., . 97
4.17 Confusion Matrix of DeepSpectraNet 98
4.18 Worst Errors of DeepSpectraNet 98

4.19 DeepSpectraNet Mapper Output for a Random Fake Audio
Sample on Different Evaluation Sets. (Mapper Input on the

left, Mapper Learned Output on the right). 99
4.20 DeepSpectraNetE2E Learned Features for Random Fake Au-

dio Sample (Validation Set) 102
4.21 DeepSpectraNetE2E Learned Features for Random Fake Au-

dio Sample (Test Set) L 103

4.22 Grad-CAM Analysis of DeepSpectraNet on a Validation Set
Sample. Grad-CAM Combined refers to the combined model
which takes both MFCC and CQT features as input, while
Grad-CAM Separated is obtained splitting the combined model
into two separate models, one for each feature set. 104

4.23 Grad-CAM Analysis of DeepSpectraNet on a Test Set Sam-
ple. Grad-CAM Combined refers to the combined model
which takes both MFCC and CQT features as input, while
Grad-CAM Separated is obtained splitting the combined model
into two separate models, one for each feature set. 105

4.24 Average Grad-CAM of DeepSpectraNet on Validation Set
Subset splitted in TP (upper left), TN (lower left), FP (up-
per right), FN (lower right) samples. a) Results for the CQT
features, b) Results for the MFCC features. 105

4.25 Average Grad-CAM of DeepSpectraNet on Test Set Subset
splitted in TP (upper left), TN (lower left), FP (upper right),
FN (lower right) samples. a) Results for the CQT features,
b) Results for the MFCC features.

A.1 Results of all the combinations of extraction intervals, feature
types and models of the traditional ML approach, evaluated
with 2 metrics on the three sets (train, test and validation).
The num. samples is equalized across intervals. On y-axis,
the extraction interval is shown.

A.2 Results of all the combinations of extraction intervals, feature
types and models of the traditional ML approach, evaluated
with 2 metrics on the three sets (train, test and validation).
The num. samples is not equalized across intervals. On y-
axis, the extraction interval is shown.

A.3 Results of all the combinations of extraction intervals, fea-
ture types and models of the neural features approach based
on MobileNetV3. The evaluation is made with 2 metrics on
the three sets (train, test and validation). The images are
normalized as illustrated in Listing 3.1. On y-axis, the ex-
traction interval is shown.

A .4 Results of all the combinations of extraction intervals, feature
types and models of the neural features approach based in
VGG16. The evaluation is made with 2 metrics on the three
sets (train, test and validation). The images are normalized
as illustrated in Listing 3.1. On y-axis, the extraction interval

isshown.

B.1 Results of traditional ML, concatenating all the features (20
per type) including mel-spectrogram and reduced to 20, 30,
40, 80 and 100 features using RFE.
B.2 Results of traditional ML, concatenating all the features (20
per type) excluding mel-spectrogram and reduced to 20, 30,
40, 80 and 100 features using RFE.
B.3 Results of traditional ML, concatenating all the features (40
per type) excluding mel-spectrogram and reduced to 20, 30,
40, 80 and 100 features using RFE.

C.1 ROC and PR curves of DeepSpectraNetLite on: a) Validation

Set,b) Test Set. 129
C.2 Confusion Matrix of DeepSpectraNetLite 129
C.3 ROC and PR curves of DeepSpectraNetFlex on: a) Valida-

tion Set, b) Test Set. L 130
C.4 Confusion Matrix of DeepSpectraNetFlex 130
C.5 ROC and PR curves of DeepSpectraNetE2E on: a) Valida-

tion Set, b) Test Set. L. 131
C.6 Confusion Matrix of DeepSpectraNetE2E 131
C.7 Worst Errors of DeepSpectraNetLite 132
C.8 Worst Errors of DeepSpectraNetFlex 132
C.9 Worst Errors of DeepSpectraNetE2E 132
C.10 DeepSpectraNetLite Mapper Output for a Random CQT Fake

Audio Sample (Validation Set) 133
C.11 DeepSpectraNetLite Mapper Output for a Random CQT Fake

Audio Sample (Test Set) 133
C.12 DeepSpectraNetLite Mapper Output for a Random MFCC

Fake Audio Sample (Validation Set) 133
C.13 DeepSpectraNetLite Mapper Output for a Random MFCC

Fake Audio Sample (Test Set) 134
C.14 DeepSpectraNetFlex Mapper Output for a Random CQT

Fake Audio Sample (Validation Set) 134
C.15 DeepSpectraNetFlex Mapper Output for a Random CQT

Fake Audio Sample (Test Set) 134
C.16 DeepSpectraNetFlex Mapper Output for a Random MFCC

Fake Audio Sample (Validation Set) 135
C.17 DeepSpectraNetFlex Mapper Output for a Random MFCC

Fake Audio Sample (Test Set) 135

C.18 Grad-CAM Analysis of DeepSpectraNetLite on a Test Set
Sample. Grad-CAM Combined refers to the combined model
which takes both MFCC and CQT features as input, while
Grad-CAM Separated is obtained splitting the combined model

into two separate models, one for each feature set. 136

C.19 Grad-CAM Analysis of DeepSpectraNetLite on a Validation
Set Sample. Grad-CAM Combined refers to the combined
model which takes both MFCC and CQT features as input,
while Grad-CAM Separated is obtained splitting the com-

bined model into two separate models, one for each feature

C.20 Grad-CAM Analysis of DeepSpectraNetFlex on a Test Set
Sample. Grad-CAM Combined refers to the combined model
which takes both MFCC and CQT features as input, while
Grad-CAM Separated is obtained splitting the combined model
into two separate models, one for each feature set. 137

C.21 Grad-CAM Analysis of DeepSpectraNetFlex on a Validation
Set Sample. Grad-CAM Combined refers to the combined
model which takes both MFCC and CQT features as input,
while Grad-CAM Separated is obtained splitting the com-

bined model into two separate models, one for each feature

C.22 Average Grad-CAM of DeepSpectraNetLite on Validation
Set Subset splitted in TP (upper left), TN (lower left), FP
(upper right), FN (lower right) samples. a) Results for the
CQT features, b) Results for the MFCC features. 138
C.23 Average Grad-CAM of DeepSpectraNetLite on Test Set Sub-
set splitted in TP (upper left), TN (lower left), FP (upper
right), FN (lower right) samples. a) Results for the CQT
features, b) Results for the MFCC features. 138
C.24 Average Grad-CAM of DeepSpectraNetFlex on Validation
Set Subset splitted in TP (upper left), TN (lower left), FP
(upper right), FN (lower right) samples. a) Results for the
CQT features, b) Results for the MFCC features. 139
C.25 Average Grad-CAM of DeepSpectraNetFlex on Test Set Sub-
set splitted in TP (upper left), TN (lower left), FP (upper
right), FN (lower right) samples. a) Results for the CQT
features, b) Results for the MFCC features. 139

List of Tables

3.1
3.2
3.3

3.4
3.5

3.6
3.7

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

Feature Engineering Hyperparameters - Part 1 42
Feature Engineering Hyperparameters - Part 2 42
Comparison of Transfer Learning (Feature Extraction) Choices

for VGG16 and MobileNetV3 49
MLP Architectures for MobileNetV3 50
Comparison of Transfer Learning (Fine-Tuning) Choices for
VGG16 and MobileNetV3 51
3D Mapper Architectures. 54
Parameter Reduction through Pooling Techniques 5%)

Different Class Imbalance Scenarios for Metrics Comparison 62

Traditional ML baseline results 71
Traditional ML Results Combining the Features and Reduc-

ing them Using RFE 72
Final RF Model Metrics Compared with Baseline Models and

State-Of-The-Art ML 74
DL Transfer Learning (Feature Extraction) Results 80
DL Transfer Learning (Fine Tuning) Results 81
Best Results of Different 3D Mapper Architectures with VGG16 82

Results of Combining Fine Tuning and Mapping with Differ-
ent Architectures (VGG16) 84
Results of Fine Tuning and Mapping with Different Param-
eters Reduction Methods (VGG16) 85
Results of Multi-Feature Approach (Evaluated on a Subset
of the Full Evaluation Data) 86
Final DL model Metrics Compared with Baseline Models and
SOTA DL models (All the Values Are in %. Evaluation Done
on The Full Dataset) 87
Final Models Training Time and Number of Parameters. . . 91

viil

4.13 Comparison of The Proposed Models Based on Traditional
ML and DL Approaches (All The Values Are in %. Evalua-
tion Done on The Full Dataset) 93

B.1 Results of All Tested 3D Mapper Configurations and Features 124

Listings

3.1
3.2
3.3
3.4
B.1
B.2
B.3
B.4
B.5

IQR based Min-Max Scaling for images
VGG16 Layers Selection
MLP for VGG16
3D Mapper CNN Implementation Example
3D Mapper CNN Implementation (64-128-3-sigmoid)
3D Mapper CNN Implementation (64-128-3-learnable)
3D Mapper CNN Implementation (64-128-3-none)
(
(

3D Mapper CNN Implementation (64x5-3x1-sigmoid) . . .
3D Mapper CNN Implementation (3-1-sigmoid)

. 121
. 121

122

. 123

Chapter 1
Introduction

The sweeping advances in the frontiers of Al and machine learning have
resulted in the evolution of sophisticated technologies able to create highly
realistic synthetic content. Deepfakes are one such important technological
development that enables the creation of convincingly faked media in the
forms of images, videos, and audio. While deepfake technology does have
much potential for applications in entertainment, education, and healthcare,
it is also emerging as a technology that presents significant challenges, more
so in areas related to cybersecurity, fraud, and disinformation.

This thesis focuses specifically on audio deepfakes, with synthesized
voices facilitated by high-end Al techniques. The misapplication of deep-
fakes has already caused a few fraud, identity theft, and disinformation
cases, raising critical concerns across certain sectors. Audio deepfake detec-
tion thus becomes one of the important domains of study to mitigate the
potential negative impacts of this technology.

The objective of this research is to explore and enhance the detection of
audio deepfakes through the use of both traditional machine learning and
deep learning approaches. Focusing on feature enhancement and automated
mapping, this work propose novel models that aim to improve detection

accuracy and generalization.

1.1 Context

In the digital era, the ability to manipulate media has evolved from sim-
ple touch-ups to sophisticated alterations that challenge our perception of
reality. Among these technologies, DeepFakes represent a significant leap

forward in digital content manipulation. This section delves into the origins

and evolution of DeepFakes, setting the stage for a comprehensive discussion

on their implications and the technological arms race they have sparked.

1.1.1 What are DeepFakes?

Deepfakes represent a newer development in the realm of manipulation of
digital media using sophisticated technologies of artificial intelligence to ei-
ther fabricate or tamper with video, audio, and images in the way they
appear to create a false impression of certain real situations. Deep learn-
ing algorithms such as Generative Adversarial Networks have been utilized
to synthetically create human images and sounds indistinguishable from
natural recordings.

The name ‘DeepFake’ is just an abbreviation for what this is based
on, namely, ‘deep learning’ and ‘fake’, since it is based upon deep neural
networks to create or manipulate fake media content. These changes are
such that they can fool detection with traditional means, either human or
automated, and hence are powerful in misinformation, entertainment, or
evil.

While this is promising considering the line of changing reality convinc-
ingly, potential consequences for privacy, security, and integrity of informa-
tion have turned this technology into one of the hot debates, with urgent
calls for effective detection and regulation strategies. This research delves
deeper into the aspects of technical understanding and, more importantly,

ethical and social implications of the emergence of DeepFakes.

Technical Foundations

Nowadays, the creation of DeepFakes mainly involves training a model us-
ing two neural networks that work against each other in what’s known as a
Generative Adversarial Network (GAN). One network, the generator, cre-
ates images or sequences, while the other, the discriminator, evaluates them.
Over time, the generator learns to produce more accurate fakes, trying to
outsmart the discriminator until the discriminator can no longer distinguish
real from fake.

This technology stems from research that has grown rapidly since the
introduction of GANs in 2014 by Ian Goodfellow and his colleagues [4].
Early DeepFakes were rudimentary and easily detectable, but recent ad-

vancements have led to hyper-realistic results. These improvements are

powered by the increasing availability of computational resources and large
datasets of facial images and audio recordings, which allow the algorithms

to learn and mimic finer human details.

1.1.2 History of DeepFakes

Early Steps

Video Rewrite software was
developed to manipulate lip
movements in videos by Bregler et
al.

Face2Face

Face2Face system demonstrated
real-time facial manipulation,
creating convincing fake videos.

Deepfake Emerges

Deepfake gained public attention

with the sharing of manipulated

pornographic videos of celebrities i

by a Reddit user called "deepfake". AT
The technology was named

after this. .
User-Friendly Tools

Accessible software like
DeepFaceLab made it easier for the

ublic to create deepfakes.
2018-present i P

Advanced Deepfakes

Deepfakes have become
increasingly realistic, making them
difficult to differentiate from real
content.

Figure 1.1: Timeline of DeepFake Technology

The concept of altering video and audio content dates back to the late
20th century. In 1997, Bregler et al. developed ‘Video Rewrite’ [5], a pro-
gram that could modify the lip movements in video footage to match a
different audio track, laying the groundwork for more advanced techniques
in facial reanimation and synchronization. The wider academic community
began to take notice of DeepFakes in 2016 when Thies et al. presented
‘Face2Face’ [6], a real-time facial reenactment system that could manipu-
late a video of one person to match the facial expressions of another. This

groundbreaking work demonstrated the potential of Al to create convincing

fake videos. Ome year later, deepfake was brought to the public’s atten-
tion when a Reddit user named ‘deepfake’ [7] shared explicit videos with
the faces of celebrities swapped into pornographic content. This marked a
turning point, bringing the potential and risks of this technology to the fore-
front of public awareness. Soon after, tools that enabled literally anybody
to generate DeepFakes in a painless manner were created. A good exam-
ple is the open-source ‘DeepFaceLab’ [8] where face swapping in a target
video is enabled an open-source software that allows users to swap faces in
videos with minimal effort. During the last few years, the quality of Deep-
Fakes has reached an unprecedented level of realism, making them nearly
indistinguishable from genuine media to the human eye and ear. Advances
in deep learning and generative adversarial networks (GANs) have enabled
the creation of synthetic content that mimics intricate facial expressions,
voice intonations, and other subtle nuances with astonishing accuracy. As a
result, even trained professionals often struggle to identify DeepFakes with-
out assistance. This has led to a pressing need for sophisticated detection
technologies which leverage Al and machine learning to analyze inconsis-
tencies and artifacts that are imperceptible to humans. Tools like these
are crucial for maintaining the integrity of information and preventing the
malicious use of DeepFake technology. This work aims to explore the detec-
tion of DeepFakes in audio content, focusing on synthetic voice generated

by state-of-the-art text-to-speech models.

1.2 Research Rationale

The decision to focus this thesis on audio deepfake detection comes from the
critical need to address the challenges posed by the misuse of synthetic audio
technologies. As discussed in the following section about the applications
of audio deepfakes, the technology offers both positive potential and signifi-
cant risks. The rapid advancement and accessibility of deepfake technology
amplify its capacity for harm, particularly in the realms of misinformation,
fraud, and cybersecurity threats.

The proliferation of deepfake tools has simplified the creation and distri-
bution of fake audio content by malicious actors, posing threats to individu-
als, organizations, and societal stability. The impact of these threats is not
merely hypothetical but has been demonstrated through various incidents

that have had real-world consequences. Thus, developing effective detection

methods is paramount to maintaining trust in audio communications and
safeguarding digital interactions.

This thesis aims to contribute to the growing field of digital forensics
by focusing on audio deepfakes. By enhancing our understanding of au-
dio deepfake generation and detection, we can develop more robust systems
to identify and mitigate these threats, ensuring that the benefits of syn-
thetic audio technologies can be realized without the accompanying risks

overshadowing them.

1.2.1 DeepFakes Applications

In this section, we explore the applications of audio deepfakes, highlighting

their potential benefits and risks across various sectors.

Positive Applications

e Healthcare: Audio deepfakes are used to create synthetic voices for pa-
tients with speech impairments [9]. This technology can help head and
neck cancer survivors communicate more effectively, significantly improv-
ing their quality of life. Synthetic voices can also anonymize patient data,
facilitating safer and broader sharing of medical information for research

purposes while maintaining patient confidentiality [10].

e Entertainment and Media: The entertainment industry utilizes audio
deepfakes to recreate voices for dubbing in different languages, enabling
a wider reach for movies and TV shows. It also helps in preserving the
voices of deceased actors for continuity in long-running series or films.
Moreover, audio deepfakes can enhance the experience of audiobooks by

using the author’s synthetic voice for narration [11].

e Education: For educational purposes, audio deepfakes can produce per-
sonalized learning experiences, such as creating custom voice assistants
that can interact with students in their native languages or accents. This
technology can also help in producing accurate and engaging audio con-

tent, broadening access to knowledge and learning resources.

Negative Applications

e Fraud and Identity Theft: One of the most concerning uses of audio

deepfakes is in fraud and identity theft. Fraudsters can use cloned voices

to impersonate individuals in phone scams. For instance, a notable case
involved criminals using Al to mimic a CEO’s voice, successfully tricking

a subordinate into transferring a significant amount of money [12].

¢ Disinformation and Fake News: Audio deepfakes can be employed to
spread disinformation by creating fake speeches or statements from public
figures, thereby influencing public opinion and creating political unrest.
A relevant example was a deepfake created in 2022, featuring Ukrainian
President Volodymyr Zelensky instructing Ukrainian forces to surrender
to Russian troops, which was shared on social media platforms [13]. This
shows how these fabricated audio clips can be used in spear-phishing
attacks or to propagate false information on social media platforms, un-

dermining trust in legitimate news sources [7].

e Cybersecurity Threats: The use of audio deepfakes poses significant
risks to cybersecurity. Cybercriminals can exploit this technology for es-
pionage, blackmail, and other malicious activities. Deepfake audio can
manipulate voice-operated systems, potentially gaining unauthorized ac-

cess to secure systems or sensitive information [12].

In summary, while audio deepfakes offer innovative applications across
various sectors, they also pose substantial risks. Positive implementations in
healthcare, entertainment, and education showcase the potential for benefi-
cial impacts. However, the intrinsic risks associated with their misuse, such
as loss of trust and significant economic damages, underscore the urgent
need for vigilance and proactive measures. This thesis explores the com-
plexities of audio deepfakes, aiming to contribute to a deeper understanding
and development of strategies to harness their potential while mitigating the

risks.

1.3 Research Questions

The increasing sophistication of audio deepfakes presents both opportuni-
ties and challenges across various domains, from entertainment and health-
care to cybersecurity and disinformation. Given the critical importance of
detecting audio deepfakes accurately, this thesis addresses several key re-
search questions aimed at improving detection methodologies and exploring

the underlying challenges.

e RQ1: What are the preliminary factors that most influence a
correct deepfake detection?
The aim of this question is to identify the key factors that contribute to
the accurate detection of audio deepfakes. Examples of such factors are
the length of the audio clip and the window and hop sizes for spectral

features extraction.

e RQ2: What are the most important audio features for accu-
rately identifying deepfakes?
This question is focused to determine which audio features, such as MFCC,
CQT, Mel-spectrogram, and others, contribute the most to differentiating
between authentic and synthetic audio. Through an empirical analysis
of feature importance in both machine learning and deep learning mod-
els, the research aims to identify the strengths and limitations of various

audio features in detecting deepfakes.

e RQ3: How effective are traditional machine learning models in
detecting audio deepfakes?
With this research question the goal is to explore the capabilities of tra-
ditional machine learning techniques in the detection of synthetic audio.
Traditional models, such as Random Forest and Support Vector Machines
(SVM), will be evaluated based on their ability to distinguish between
real and fake audio samples. The research will also investigate how these

models can be optimized to improve detection accuracy and robustness.

e RQ4: Can deep learning models represent a leap forward in au-
dio deepfake detection?
With the rise of end-to-end deep learning models, this question inves-
tigates whether deep learning approaches provide superior performance
compared to traditional machine learning methods. By leveraging neu-
ral networks that extract high-level features automatically, this research
examines whether these models can generalize better to unseen deepfake

generation techniques.

e RQ5: How does feature combination affect the performance of
models in detecting audio deepfakes?
Different audio features capture distinct aspects of the audio signal, such
as frequency, time, and amplitude. This question explores the impact of

combining multiple audio features on the performance of deepfake detec-

tion models. By combining diverse features like MFCC, CQT, and Mel-
spectrograms, the research aims to assess the models’ ability changes in

detecting synthetic audio.

¢ RQ6: How can the features be improved to enhance the detec-
tion of audio deepfakes?
This question delves into feature engineering techniques that can enhance
the quality and informativeness of audio features for deepfake detection.
By implementing Deep Learning based automated feature extraction and
mapping strategies, the goal is to improve the performance of the models

in distinguishing between real and synthetic audio.

¢ RQ7: How can model explainability techniques be applied to
understand the decision-making process of deep learning mod-
els?
Given the complexity of deep learning models, understanding how these
models make decisions is crucial. This question explores the use of tech-
niques like Grad-CAM and Mapper Analysis to interpret the model’s
predictions, identifying key areas in the audio data that influence the
detection of deepfakes. The insights gained from these explainability

methods will help in improving model transparency and trustworthiness.

Through these research questions, the thesis aims to push the boundaries
of current detection methods and provide a comprehensive understanding

of the strengths and weaknesses of various approaches.

1.4 Thesis Outline

This section provides a roadmap of the thesis, outlining the structure and

sequence of chapters and the key topics covered in each.

e Chapter 1: Introduction: Establishes the foundational context, moti-
vations, and research questions related to audio deepfakes. It covers the
essence of what deepfakes are, their historical context, and the rationale

behind focusing on audio deepfake detection.

e Chapter 2: Background: Explores deepfake typologies, detection tech-

niques, and the theoretical frameworks utilized in deepfake analysis. This

section details the technologies and methods underpinning deepfake de-
tection, including traditional and machine learning-based approaches,

alongside discussions on audio features and models.

Chapter 3: Methods and Experiments: Describes the methodologies
used in the research, from dataset selection and feature engineering to the

detailed implementation of machine learning and deep learning models.

Chapter 4: Results and Explainability: It starts by outlining the
experimental setup and evaluation metrics used to assess the efficacy of
proposed solutions. The main focus is on the experimental outcomes from
the experiments about feature engineering and proposed models perfor-
mance against state-of-the-art models. It also discusses the explainability
of the models using techniques like Grad-CAM, Stage Analysis and Worst

Errors Investigation.

Chapter 5: Conclusions: Summarizes the research findings by answer-
ing to to the research questions. It also discusses the implications, and

proposes future directions for the field of audio deepfake detection.

Appendices: Include supplementary results and extended analyses that

support and enhance the understanding of the research findings.

Chapter 2
Background

This chapter lays the foundational knowledge required to understand the
various aspects of deepfake technology, particularly focusing on audio deep-
fakes. It explores the different types of deepfakes, the methods employed
in their detection, and the critical audio features utilized in distinguishing
genuine from fabricated content. Additionally, it delves into the machine
learning models that are at the forefront of detecting and analyzing deep-
fakes. Each section is designed to progressively build an understanding of
the complex landscape of deepfake technology, addressing both its innova-

tive uses and the challenges it presents in digital media integrity.

2.1 Awudio DeepFakes Typologies

Audio deepfake technology has evolved into various forms, each employ-
ing distinct methods to create or manipulate digital content. This section
categorizes DeepFakes into four primary typologies: Text-to-Speech (TTS),
Voice Conversion (VC), Partially Fake, and Replay Attack. Each typol-
ogy represents a unique approach to generate deceptive media with specific
techniques and implications. Therefore, each typology requires a tailored
detection strategy to identify and mitigate the risks associated with deep-

fake technology. In this work, we focus on the synthesis-based deepfakes.

2.1.1 Text-to-Speech (TTS)

Text-To-Speech (TTS) is a technology that converts written text into spoken
words. TTS systems have seen significant improvements in recent years,

especially with the advent of deep learning models, which have enabled

10

TTS systems to produce highly natural, expressive and emotionally rich

speech, narrowing the gap between synthetic and human speech.

Technological Evolution of TTS Systems

Text-to-speech systems have evolved significantly over the past few decades.
Initially, TTS systems relied on concatenative synthesis techniques [14],
where pre-recorded speech units (phonemes) were pieced together to form
full sentences. These early systems were often rigid and lacked natural
variability in speech, making them sound robotic and unnatural.

With the rise of statistical models like Hidden Markov Models (HMMs),
TTS systems moved towards parametric speech synthesis, which allowed
for more flexibility by generating speech through the manipulation of pa-
rameters like pitch, duration, and intensity. While this improved over con-
catenative approaches, the synthesized speech still struggled to reach the
naturalness of human speech due to the simplified representation of speech
parameters [15].

The most transformative shift occurred with the advent of deep learning-
based approaches. Models like WaveNet [16] (developed by Google Deep-
Mind) marked a breakthrough in speech synthesis by utilizing neural net-
works to directly model raw audio waveforms. WaveNet and similar ar-
chitectures, leverage large datasets and computational resources to model
intricate details of human speech, overcoming limitations of previous meth-
ods.

Currently, modern TTS systems are largely built on end-to-end deep
learning architectures, with attention mechanisms enabling the alignment
between text and speech and autoregressive models or parallel synthesis ap-
proaches improving the efficiency and quality of speech generation. These
systems can learn from massive datasets of human speech, capturing nu-

anced patterns in pitch, intonation, and speech rhythm.

TTS System Architecture

Text-to-speech systems typically consist of three cooperating core modules,
each responsible for a specific aspect of the text-to-speech conversion process

17).

e Text Processing Module: This is the first stage in a TTS system,

where the input text is processed and converted into a form that can be

11

understood by the speech synthesis system. In traditional T'TS systems,
this module would often convert text into phonemes or linguistic features,
which represent the smallest units of sound in speech. The text process-
ing stage also includes linguistic analysis, such as part-of-speech tagging,
intonation modeling, and punctuation interpretation to generate a rich
linguistic representation of the input text. In modern T'TS systems, deep
learning models handle these linguistic features more implicitly through

learned embeddings.

Acoustic Model: After the text has been processed, the acoustic model
compute the characteristics of the speech, such as pitch, duration, and
intonation. In neural TTS systems, the acoustic model is often a deep
neural network, like in Tacotron or FastSpeech, which takes the linguistic
features from the text processing module and predicts the corresponding
acoustic features. These latter represent how the speech should sound,
leveraging tools like mel-spectrograms (representations of sound intensity
over time) and other spectral details of the speech signal. This step aims
to ensure the speech sounds natural and expressive, with proper pauses,

stress, and emotion.

Vocoder: The vocoder is the final stage of the T'TS system and is respon-
sible for generating the final speech waveform from the predicted acoustic
and linguistic features. While older vocoders were capable of processing
only acoustic features (e.g., mel-spectrogram), modern systems, such as
WaveNet and WaveGlow, can take as input both linguistic (phonemes)
and acoustic features, leveraging the flexibility offered by neural networks.
Vocoders are essential for achieving human-like naturalness in speech syn-
thesis, capturing nuances in sound such as background noise, breath, and

fine-grained temporal variations.

Over time, Text-to-Speech (TTS) systems have evolved from traditional
modular architectures to more integrated, end-to-end models. [17] In tra-

ditional systems, each component—text analysis, acoustic model, and

vocoder—is trained separately. While this modular approach provides flex-

ibility and control over individual parts, it also increases complexity in the

training process.

Partially end-to-end models, such as Tacotron 2 and Deep Voice 3,
simplify this process by merging the text analysis and acoustic modeling

stages into a single module, generating mel-spectrograms directly from text

12

or phonemes. The final waveform is then produced by a neural vocoder like
WaveNet, maintaining some modularity but reducing complexity compared
to traditional methods.

Fully end-to-end models like FastSpeech 2s and ClariNet represent
the latest advancements in T'TS. These systems integrate all components

into a single model that converts input text directly into speech waveforms.

2.1.2 Voice Conversion (VC)

Voice Conversion (VC) refers to the process of transforming the voice of
a source speaker into a target speaker’s voice while preserving the original

linguistic content. VC systems can be used for several purposes:

e Voice Correction: This finds application for rehabilitation purposes,
such as helping individuals with speech disorders or injuries to commu-

nicate more effectively [18].

e Voice Impersonation: This focuses on altering the voice to mimic an-
other person, which can be used for entertainment, dubbing, or even

malicious purposes like fraud [18].

e Voice Emotion Change: This technique modifies the emotional tone or
mood of the speaker’s voice without altering the content or identity. It can
be used to change how a message is perceived, potentially distorting the
intent behind the speech. Changing the emotional content of a message

can indeed alter its semantic meaning [19].

e Scene Fake: While not properly focused on voice, scene fake alters the
acoustic environment or background of the audio, making it seem like
the recording was made in a different location. While the speech itself
remains unchanged, the context of the audio is manipulated to create a

false impression of the setting [19].

2.1.3 Partially Fake Audios

Partially fake audios refer to manipulated recordings where only certain
portions of the audio are altered or artificially generated, while the rest re-
mains authentic. This manipulation can involve adding or modifying words
[20], phrases, or specific parts of a conversation to alter its meaning without

generating an entirely fake recording.

13

Detecting partially fake audio is particularly challenging because most of
the content is genuine, and only small portions are synthetic. This makes it
harder for detection algorithms to identify manipulations without advanced

analysis of speech patterns and subtle inconsistencies.

2.1.4 Replay Attack

Replay attacks, though not Al-generated, represent a prevalent form of au-
dio spoofing, where pre-recorded legitimate audio is used to deceive systems.
These attacks exploit the inability of speech recognition or speaker verifica-

tion systems to distinguish between live audio and pre-recorded voices.

Attack Procedure

Replay attacks typically involve two methods [18]:

e Simple Playback: The attacker records legitimate audio and then plays

it back to a system, convincing it that the voice is live.

e Cut and Paste: In this case, attackers take short segments of recorded
audio and stitch them together to create longer fake message or conver-

sation and reproducing specific content or responses.

The various types of audio deepfakes discussed in this section highlight the
diverse ways in which speech and sound can be manipulated using mod-
ern technology. From the complex transformation of voice characteristics
through TTS and voice conversion systems to the more subtle alterations
in emotion or environmental context, deepfake audio has a wide range of

applications and implications.

2.2 DeepFake Detection Methods

The detection of audio deepfakes has gained significant attention, with var-
ious methods being proposed to tackle this challenge. These techniques
can be broadly divided into three categories: signal processing-based meth-
ods, traditional machine learning approaches, and deep learning techniques.
While signal processing methods focus on analyzing specific audio signal
characteristics and often don’t rely on Al techniques, the main focus of this

thesis lies in machine learning and deep learning methods. Therefore, the

14

non-Al approaches will be briefly mentioned, and the core discussion will

revolve around the more advanced Al-driven detection methods.

2.2.1 Signal Processing Methods

Signal processing-based approaches are among the earlier techniques em-
ployed for detecting audio deepfakes. These methods rely on analyzing
distinct characteristics of the audio signal, such as spectral patterns, pitch
variations, or phase inconsistencies. By examining these features, signal
processing methods aim to detect anomalies that may reveal synthesized or

manipulated audio content [21].

2.2.2 Traditional Machine Learning Methods

Traditional machine learning (ML) methods focus on extracting handcrafted
features from the audio data and feeding them into classical classifiers to de-
tect anomalies associated with deepfakes. These approaches heavily rely on
feature engineering, where specific signal characteristics, such as MFCCs
(Mel-frequency cepstral coefficients), zero-crossing rate, and Chroma fea-
tures, are used to represent the audio signal.

Given the extracted features, classical machine learning algorithms such
as Support Vector Machines (SVMs), Random Forests (RFs), and k-Nearest
Neighbors (k-NN) are applied to classify the audio samples as either genuine
or fake. These models are trained on labeled data, learning to distinguish
between real and synthetic audio based on predefined characteristics.

A key strength of traditional ML methods lies in their interpretabil-
ity and ability to handle smaller datasets, which makes them well-suited
for environments with limited data availability. However, these methods
are highly dependent on the quality and relevance of the chosen features,
making feature selection a critical step in the process. Furthermore, in
the most complex deepfake scenarios, where advanced synthesis models are
used, traditional ML, methods may struggle to capture the subtle manipu-

lations introduced, thereby requiring more complex models and features.

Literature

Borrelli and colleagues [22] designed a model using Support Vector Machines
(SVM) alongside Random Forest (RF) to identify synthetic voices, utilizing
a novel audio feature referred to as Short-Term Long-Term (STLT). Their

15

models were trained on data from the 2019 Automatic Speaker Verification
(ASV) Spoof Challenge [23]. The results revealed that the SVM model
outperformed RF, achieving 71% better performance.

Kochare et al. [24] tested different ML models, including SVM, Random
Forest, and k-Nearest Neighbors (k-NN), to detect synthetic audio on the
Fake or Real (FoR) dataset. The results showed that the SVM model out-
performed the other models with a validation accuracy of 85% and a test
accuracy of 67% using RMSE, MFCC, Chroma, and other spectral features.

Liu et al. [25] compared the robustness of SVM with a Convolutional
Neural Network (CNN) to detect fake stereo audio from real ones. The
comparison revealed that CNN is more robust than SVM when tested across
datasets, demonstrating the higher potential of CNN in detecting deepfake

audio.

2.2.3 Deep Learning Methods

Deep learning (DL) methods have become the dominant approach for de-
tecting audio deepfakes, offering greater flexibility and accuracy compared
to traditional machine learning methods. These approaches can be catego-

rized into partially automated and fully end-to-end methods.

Partially Automated Approaches

Partially automated approaches also referred to as hybrid methods, combine
handcrafted feature extraction with deep learning models. These methods
partially solve the problems of traditional ML methods by enhancing fea-
ture extraction with deep learning models. In these systems, features such
as MFCCs, Chroma, or spectrograms are first extracted using traditional
signal processing techniques. These extracted features are then fed into
deep learning models, typically Convolutional Neural Networks (CNNs) or
Recurrent Neural Networks (RNNs), to extract more complex patterns and
relationships from the data, finally crafting neural features that are fed
into a classifier for the final decision.

The key benefit of partially automated approaches is that they leverage
the strengths of both manual feature extraction and deep learning, offering
greater control over the features used while still benefiting from the deep
learning model’s capacity to learn complex patterns.

However, a drawback of these approaches is that they still rely on the

16

quality of manually extracted features, which may differ in effectiveness

depending on the audio manipulation techniques used.

Literature

E.R. Bartusiak at al. [26] proposed a CNN model to detect deepfake audio
using only spectrogram as feature. Despite the high accuracy of 85.99% the
authors found that the model was not robust to generalize to new unseen
audio.

Whang et al. [27] proposed a new solution to extract features for syn-
thetic audio detection using a deep learning model. The authors extracted
layer-wise neuron activation patterns from a DL-based Speech Recognition
System. Exploring two different approaches, called TKAN and ACN, the
authors found that the TKAN approach outperformed the ACN approach
in detecting synthetic audio, achieving a detection rate of 98.1% across syn-

thetic and voice conversion audio datasets.

Fully End-to-End Approaches

In fully end-to-end deep learning methods, the entire process, from raw
audio input to classification, is handled by a deep neural network. These
models learn to extract features autonomously from the audio data, elim-
inating eliminating the need for hand crafted feature engineering. This
makes end-to-end models more flexible and capable of capturing fine details
and patterns within the audio that traditional methods might overlook. Fur-
thermore, end-to-end models can adapt to different types of audio deepfakes
without requiring extensive modifications to the feature extraction process.

One limitation, however, is that fully end-to-end models require large
amounts of labeled data for training, are computationally intensive and may

be more challenging to interpret as they act as black-box models.

2.3 Audio Features

This section delves into the key audio features used in deepfake detection,

providing their characteristics and interpretability.

17

Mel-frequency Cepstral Coefficients (MFCC)

Mel-frequency Cepstral Coefficients (MFCCs) are derived from the power
spectrum of an audio signal and represent the short-term power spectrum of
sound, specifically adapted to mimic the human auditory system’s percep-
tion of frequency. The MFCCs are extracted by applying a set of mel-scaled
filters to the signal, followed by a discrete cosine transform (DCT) to cap-

ture the important frequency components.

Interpretation MFCCs offer a semantic decomposition of audio in terms

of tonal and timbral properties:

e Low MFCCs (MFCC 1-2) provide broad spectral energy and information
about the general shape of the sound. MFCC 1 is often related to the
loudness of the signal, while MFCC 2 can indicate the balance between

low and high frequencies.

o Mid MFCCs (MFCC 3-6) focus on the formant structure, providing more
information about vowel sounds and timbre or the timbral content of

audio.

e High MFCCs (MFCC 7 and above) capture high-frequency formants, har-
monics, and articulation details, representing the finer spectral compo-

nents of the audio signal.

One point to consider is that the exact boundaries between ”low,” "mid,”
and "high” MFCCs can vary depending on the specific application and the

total number of MFCCs being used.

Use in Audio Deepfake Detection MFCCs are highly effective for de-
tecting anomalies in both broad spectral content and subtle speech details.
Low MFCCs can help identify general discrepancies in pitch and loudness
between real and fake audio. For example, if a deepfake voice consistently
lacks the natural variations in overall energy or has an unusual balance of
low and high frequencies that’s atypical for human speech, these anomalies
would likely be reflected in the low MFCC range (MFCC 1-2).

Mid MFCCs are useful for detecting inconsistencies in the formant struc-
ture and timbral qualities of speech. For instance, if a synthetic voice pro-
duces vowel sounds with formant frequencies or transitions that don’t match

natural human speech patterns or if it exhibits unnatural timbral qualities,

18

these discrepancies would likely be evident in the mid MFCC range (MFCC
3-6).

High MFCCs capture finer artifacts that might arise from synthetic
voice generation techniques. For example, if a deepfake voice lacks nat-
ural transitions in consonant production or exhibits unnatural harmonics,
these discrepancies would likely appear in the high MFCC range (MFCC 7

and above).

Constant-Q Transform (CQT)

The Constant-Q Transform (CQT) is a time-frequency representation that
provides a logarithmic frequency resolution. Thanks to its dynamic win-
dow length, the CQT provides higher frequency resolution in low-frequency

regions and higher time resolution in high-frequency regions.

Interpretation CQT provides a clear breakdown of the audio in terms

of slow, broad sounds versus sharp, fast events:

o Low CQT values (lower frequency bands) represent lower frequencies and

capture slower audio events, like long, the low end of a speaker’s voice.

e High CQT values (upper frequency bands) capture higher frequencies and
are associated with sharper, faster events, such as consonant bursts in

speech.

The spacing between wave-like structures in a CQT plot corresponds to

rhythm and timing, offering insight into the pacing of speech or music.

Use in Audio Deepfake Detection CQT is useful for detecting rhythm
and frequency-related artifacts in deepfake audio. Low CQT values can help
identify unnatural modulations in speech or music’s low-frequency compo-
nents, such as a lack of natural variation in pitch. Meanwhile, high CQT
values capture the more intricate, high-frequency details that may reveal

synthesis imperfections, such as unnatural timing of fast speech events.

Mel-Spectrogram

A Mel-Spectrogram represents the frequency content of a signal over time,
but mapped to the mel scale, which mirrors the human ear’s perception of

pitch. It is widely used in speech and audio processing.

19

Interpretation The Mel-Spectrogram offers insight into:
e Low-frequency bands: Capture bass-heavy sounds or deep voice tones.

e High-frequency bands: Represent sharper sounds like consonants or high-

pitched notes.

The intensity of the spectrogram at different frequencies and time points
indicates the energy distribution of the audio signal, with brighter regions

corresponding to higher energy levels.

Others

In addition to the Mel-Spectrogram, MFCC, and Chroma STFT, several
other audio features play a role in deepfake detection by capturing various

aspects of the audio signal.

Chroma STFT Chroma STFT (Short-Time Fourier Transform) captures
the energy distribution across 12 different pitch classes (chroma), represent-
ing musical properties like harmony or chords. This feature is particularly
useful for music processing but can also reveal differences in tonal quality in

speech, which may be altered or artificially manipulated in deepfake audio.

Root Mean Square (RMS) RMS measures the energy or loudness of
the signal over time. It reflects the amplitude of the waveform, providing
insight into how the intensity of the audio changes. Variations in RMS can
be used to detect inconsistencies in loudness patterns often introduced by

synthetic audio generation techniques.

Spectral Rolloff This feature represents the frequency below which a
certain percentage (typically 85-90%) of the total spectral energy is concen-
trated. It helps distinguish between harmonic and non-harmonic content,
which can be useful in identifying whether audio has been artificially gen-

erated, as deepfake audio may exhibit unnatural rolloff characteristics.

Zero Crossing Rate (ZCR) ZCR measures the rate at which the signal
changes sign (crosses the zero axis). It is particularly useful for distinguish-
ing between voiced and unvoiced segments in speech. High ZCR values
typically indicate noise or sharp transients, and this feature can reveal un-

natural signal fluctuations in synthetic audio.

20

Spectral Centroid This feature indicates where the center of mass of the
spectrum is located, effectively representing the ”brightness” of the sound.
In human speech, this correlates with the timbre and articulation. Deepfake
audio may produce anomalies in the spectral centroid due to imperfect

synthesis of the sound’s timbral characteristics.

Spectral Bandwidth The spectral bandwidth quantifies the range of
frequencies present in the audio signal. It helps in analyzing the spread of
frequencies in the signal and can highlight issues with how synthetic audio
handles harmonic structures and the overall sound quality. A mismatch in

the expected bandwidth can signal potential deepfake audio artifacts.

It is important to highlight that features such as MFCC, CQT, Mel-Spectrogram,
and Chroma STFT provide multiple values per audio frame, resulting in a
rich representation of frequency content over time. In contrast, other fea-
tures like RMS, Spectral Rolloff, Zero Crossing Rate, Spectral Centroid, and
Spectral Bandwidth produce a single value per frame. To visualize these
features in image-based models, preprocessing steps are often required, as

discussed in Section 3.2.2.

2.4 Machine Learning Models

In this section, we explore various models employed in our research, cate-

gorized into traditional machine learning models and deep learning models.

2.4.1 Traditional Models

The traditional models used in this project are Logistic Regression (LR),
Support Vector Machines (SVM), Random Forest (RF), eXtreme Gradient
Boosting (XGBoost) and CatBoost.

Logistic Regression (LR)

Logistic Regression (LR) is a fundamental statistical method used for bi-
nary classification tasks in machine learning. It models the probability
that a given input x belongs to a particular category. LR is favored for

its simplicity and interpretability, making it a common choice for problems

21

where understanding the influence of predictor variables is as important as

prediction accuracy.

Conceptual Understanding At its core, Logistic Regression estimates
the probability P(Y = 1|x) that the dependent variable Y equals 1 (the
positive class), given the independent variables x. Unlike linear regression,
which models the output as a linear combination of inputs, LR applies the

logistic function to ensure the output probabilities lie between 0 and 1.

Mathematical Formulation The logistic function, also known as the

sigmoid function, is defined as:

1

PY =1|x) =0(2) = Ty

where

2= By + oy + foxa + -+ - + By

Here, [, is the intercept, S; are the coefficients for the independent variables
x;, and n is the number of predictors. The coefficients are estimated using
maximum likelihood estimation (MLE), aiming to find the parameter values

that maximize the likelihood of observing the given data.

Assumptions Underlying Logistic Regression For LR to produce

reliable results, several assumptions need to be satisfied:

e Linearity in the Log-Odds: The log-odds of the outcome are a linear

combination of the independent variables.

e Independent and Identically Distributed Data: The training data

is assumed to be independently drawn from the distribution.

e Lack of Multicollinearity: Independent variables are not highly cor-
related with each other.

Support Vector Machines (SVM)

Support Vector Machines (SVM) are powerful supervised learning models
used for classification and regression tasks in machine learning. They are

particularly effective in high-dimensional spaces and are known for their

22

ability to handle datasets where the number of features exceeds the number
of samples. Indeed, SVMs aim to find the optimal hyperplane that maxi-
mally separates data points of different classes. This basically corresponds

to regularization.

od, = 2/lwil

(a). Candidate Hyperplanes (b). Optimal Hyperplane

Figure 2.1: Support Vector Machines Hyperplane Selection

Conceptual Understanding The fundamental idea behind SVM is to
find a hyperplane in an n-dimensional space (n being the number of features)
that distinctly classifies the data points. The optimal hyperplane is the
one that has the maximum margin, which is the largest distance between
data points of both classes. Data points closest to the hyperplane are called
support vectors, and they are critical in defining the position and orientation

of the hyperplane.

Mathematical Formulation Given a training dataset {(x;, y;)}7, where
x; € R" and y; € {—1,+1}, the SVM optimization problem can be formu-

lated as:

1
min > wl?
w,b 2

)

subject to:

(wix;+b)>1, ify;=+1 _—

I
3

(wix; +b) < —1, ify;=—1

Here, w is the weight vector perpendicular to the hyperplane, b is the bias
term, and ||w|| denotes the Euclidean norm of w. This formulation secks
to maximize the margin 1/||w|| while ensuring all data points are correctly

classified.

23

To handle training sets that are not linearly separable instead of rejecting
solutions that do not satisfy all the constraints, we penalize them by adding
an extra cost to the objective function.

Consider the decision function z; = w'x; + b:

o If y, = +1 and 2; < 1, the sample is within the margin or misclassified;

it is penalized by an amount 1 — z;.

o If y; = —1 and z; > —1, the sample is within the margin or misclassified;

it is penalized by an amount 1 + z;.

This penalization scheme corresponds to the use of the hinge loss func-

tion, defined as:

h(yl, Zi) = max{l — YiZi, 0}

The soft-margin SVM optimization problem becomes:

ER Jw
— D> _h(yi,z) + A
min o 2k =) AT

where A is the regularization parameter that controls the trade-off be-

. . . . 2
tween maximizing the margin (@) and minimizing the classification error

(5 200 1w, 20)).-

The Kernel Trick When data is not linearly separable in the original
feature space, SVM uses the kernel trick to implicitly map input features
into a higher-dimensional space where a linear separator might exist. The
kernel function K(x;,x;) computes the inner product of the images of the
data points in the feature space without explicitly performing the transfor-

mation:

K(xi,x;) = ¢(Xi)T¢(Xj)

24

Xo
e ©
.....
X1 o.. o o
-".o . a.
Ld

°
.
°)(,1Z
.
.

Xo V2XoXa
(a). Original Space (b). Mapped Space
Xy
Xn’

(c). Decision Boundary

Figure 2.2: Hlustration of the Kernel Trick in SVM

In other words, the kernel function, working in the original feature space,
returns a scalar whose value is the same as the inner product of the pro-
jection of the data points in the higher-dimensional space. Common kernel

functions include:

e Linear Kernel: K(x;,x;) = x; x;

e Polynomial Kernel: K(x;,x;) = (x,x; +7)?

e Radial Basis Function (RBF) Kernel: K(x;,x;) = exp(—|/x; —x;||?)
e Sigmoid Kernel: K(x;,x;) = tanh(x; x; +)

The kernel trick allows SVMs to build non-linear classifiers by leveraging

these kernel functions to capture complex relationships in the data.

Assumptions Underlying Support Vector Machines For SVMs to

perform effectively, several assumptions are considered:

e Linear Separability: Assumes that the classes are linearly separable in
the original feature space or can be mapped to a linearly separable space

using the kernel trick.

25

e Independent and Identically Distributed Data: The training data

is assumed to be independently drawn from the distribution.

e Appropriate Kernel Selection: Assumes that a suitable kernel func-

tion can capture the underlying data patterns.

e Support Vector Representativeness: The support vectors are repre-
sentative of the entire dataset and are critical for defining the decision

boundary.

Random Forest

Random Forest is an ensemble learning method used for classification and
regression tasks. It operates by constructing a multitude of decision trees
during training time and outputting the class that is the mode of the classes
(classification) or mean prediction (regression) of the individual trees. Ran-
dom Forests are known for their ability to handle large datasets with higher
dimensionality and for reducing overfitting by averaging multiple decision

trees.

Decision Tree-1 Decision Tree-2 Decision Tree-N

Result-1 Result-2 Result-N

Majority Voting / Averaging

Final Result

Figure 2.3: Random Forest Visualization

Conceptual Understanding The fundamental idea behind Random For-
est is to combine the predictions of several base estimators built with a
certain degree of randomness to improve the generalizability of the model.

Each tree in the forest is built from a bootstrap sample of the data, and at

26

each node, a random subset of features is selected for splitting. This ran-
domness helps in creating a diverse set of trees, which, when aggregated,

produce a more robust and accurate model.

Mathematical Formulation Given a training dataset {(x;, v;)},, Ran-
dom Forest constructs M decision trees {T;,}*_,. The prediction § for a
new input x is given by:

For classification (majority voting):
g =mode{T,,(x) | m=1,2,..., M}

For regression (average prediction):
M

Each tree T, at each split considers a random subset of k features from the
total d features. The parameter k is typically set to v/d for classification

and d/3 for regression tasks.

Assumptions Underlying Random Forest Random Forest makes just

one assumption:

e Sufficient Diversity Among Trees: The individual trees are suffi-

ciently diverse due to random feature selection and bootstrapping.

XGBoost

XGBoost (eXtreme Gradient Boosting) is a scalable and efficient implemen-
tation of gradient boosting machines, designed for speed and performance.
It was developed by Chen and Guestrin [28] and has become a popular

choice due to its speed, accuracy, and flexibility.

Conceptual Understanding XGBoost builds an ensemble of decision
trees sequentially, where each new tree aims to correct the errors of the
previous trees. It employs the gradient boosting framework, optimizing a
differentiable loss function by adding weak learners (decision trees) in a

stage-wise fashion.

27

Mathematical Formulation Given a training dataset {(x;,v;)}Y,, the
model predicts the output g; by summing the predictions of K regression

trees:
K

gi=Y felxi), fu€F

k=1

where F is the space of regression trees. The objective function to be
minimized is:
N K

L= Uyd)+ > Qf)

i=1 k=1

where [(y;, y;) is a differentiable convex loss function (e.g., squared error for
regression), and §(fx) is a regularization term penalizing the complexity of

the model, typically defined as:

1
) =T + Aol

Here:

e T is the number of leaves in the tree.
e w represents the leaf weights.

e v and A are regularization parameters controlling the trade-off between

model complexity and training loss.

By adding new trees that predict the residuals (errors) of the previous
ensemble, XGBoost minimizes the objective function using second-order

Taylor approximation, which improves optimization speed and accuracy.

Assumptions Underlying XGBoost XGBoost operates under several

assumptions:

¢ Additive Modeling: Assumes that the underlying relationship can be

modeled as an additive combination of decision trees.

e Independence of Residuals: Assumes that the errors corrected by each

subsequent tree are independent.

28

e Sufficient Data: Requires enough data to accurately capture the un-

derlying patterns without overfitting.

CatBoost

CatBoost (Categorical Boosting) is a gradient boosting algorithm devel-
oped by Yandex [29] [30], designed to handle categorical features effectively.
CatBoost outperforms many existing algorithms by reducing overfitting and

providing state-of-the-art results with minimal hyperparameter tuning.

First Tree Second Tree

Figure 2.4: CatBoost Algorithm - Sourced from [1]

Conceptual Understanding CatBoost is based on the gradient boost-
ing framework but introduces innovative techniques to handle categorical

features and reduce overfitting:

e Ordered Target Statistics: For each categorical feature, CatBoost
computes target statistics (e.g., mean target value) in an ordered manner
to prevent target leakage. This means that for each data point, the statis-
tics are calculated only using data preceding it in a given permutation.
This allows CatBoost to handle categorical features efficiently without

the need for extensive preprocessing like one-hot encoding.

e Ordered Boosting: Instead of using the same dataset for both learn-
ing the model and computing the residuals (gradients), CatBoost uses

permutations of the dataset to create training sets that avoid using the

29

current data point when computing its own residuals. This technique

reduces overfitting and improves model generalization.

Mathematical Formulation CatBoost builds an ensemble of decision
trees in a stage-wise fashion, similar to other gradient boosting methods.
At each iteration t, it aims to minimize a loss function L by adding a new

tree f;(x) to the ensemble:

Fy(x) = Fio1(x) + 2 fu(x)

Here, Fi(x) is the ensemble model at iteration ¢, and -+, is the learning
rate. The main innovation lies in how CatBoost calculates the gradients

and handles categorical features, as discussed above.

Assumptions Underlying CatBoost CatBoost makes several assump-

tions for effective performance:

e Dependence Structure: Assumes that the data has a certain depen-
dence structure that can be captured by the ordered boosting and target

statistics methods.

e Sufficient Data: Requires a sufficient amount of data to accurately

compute ordered target statistics without introducing significant noise.

e Independent and Identically Distributed Data: The training data

is assumed to be independently drawn from the distribution.

2.4.2 Deep Learning Models

The deep learning models used in this project are Convolutional Neural
Networks (CNNs) and Multilayer Perceptrons (MLPs).

Multilayer Perceptron (MLP)

Multilayer Perceptron (MLP) is a class of feedforward artificial neural net-
works (ANN) that consists of multiple layers of nodes in a directed graph,

with each layer fully connected to the next one.

30

Output
layer

Input

layes Hidden layers

i QIOIOI.IO

Vf/

W

@ N \‘\\"fr i\\\ 'Ii
}!’ “ W 4 i\\s‘?” ’/
. MPA @ AL A
\V .v v‘y(\"r v‘ , 0
’ g"\‘ }/'0
. A\ . N 00 .
"‘ F’"

N5

pes
”.....

.

Back propagation

Figure 2.5: Multilayer Perceptron Architecture - Sourced from 2]

Conceptual Understanding An MLP comprises an input layer, one or
more hidden layers, and an output layer. Each layer is made up of nodes
(neurons) that take as input the weighted sum of the outputs from the
previous layer, apply an activation function, and pass the result to the next
layer. In this way, the network is capable of approximating any continuous

function given sufficient data and appropriate network architecture.

Mathematical Formulation Given an input vector x € R”, the MLP

computes an output y through a series of transformations:

1. Forward Propagation:

For each layer [=1,2,..., L:

20 — W0a0-D L pO

D=0 (Z(l))
Where:
e W is the weight matrix connecting layer (I — 1) to layer [.
e b is the bias vector for layer [.

e al is the activation of layer I.

e ¢ is the activation function for layer I (e.g., sigmoid, ReLU, tanh).

31

e For the input layer, a® = x.
The output of the network is y = al®).

2. Loss Function:

A loss function L(y,y) measures the discrepancy between the true out-
puts y and the predicted outputs y. Common loss functions include
mean squared error (MSE) for regression and cross-entropy loss for clas-

sification.

3. Backpropagation and Weight Updates:

The network’s weights and biases are updated using gradient descent
optimization algorithms to minimize the loss function. The gradients

are computed using backpropagation:
For each parameter € {W® b} :

L
0(—0—77(2—9

Where 7 is the learning rate.

Assumptions Underlying MLP For MLPs to perform effectively, sev-

eral assumptions are made:

e Sufficient Data: Assumes access to a large and representative dataset

for training to capture the underlying patterns.

e Appropriate Network Architecture: The architecture (number of
layers, number of neurons per layer, activation functions) must be suitable

for the complexity of the task.

e Independent and Identically Distributed Data: The training data

is assumed to be independently drawn from the distribution.

e Stationarity: Assumes that the underlying data distribution does not

change over time.

32

Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs), firstly introduced by Fukushima et
al. [31] are a class of deep learning models specifically designed to process
data with a grid-like topology, such as images. CNNs are characterized by
their use of convolutional layers that apply filters to local regions of the in-
put, capturing spatial hierarchies and patterns and producing feature maps.
Pooling layers are used to reduce the dimensionality of the feature maps,
and fully connected layers interpret the extracted features for classification

or regression tasks.

fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 ReLU activation
Convolution Convolution | /—&
(5x5) kernel Max-Pooling (5x5) kernel Max-Pooling 2 (with
valid padding 2x2) valid padding (2x2) . @ ——

/_M ,~ : .0

— D @1

@2
INPUT n1channels nl channels n2 channels n2 channels || E ' 9
(28x28x1) (24 x 24 x n1) (12x 12 xn1) (8x8xn2) (4x4xn2) E / OUTPUT

n3 units

Figure 2.6: Convolutional Neural Network Architecture - Sourced from [3]

Conceptual Understanding The main mathematical operation in CNNs
is the convolution, which involves sliding a small matrix of weights, known
as a filter or kernel, over the input data. At each position, the filter performs
element-wise multiplication between its weights and the corresponding input
values, summing the results to produce a single output value. This process’
output is a feature map that highlights the presence of certain features in
the input.

During training, the CNN learns how to adjust the weights of these filters
in a way that they become sensitive to specific patterns important for the
task at hand, such as edges, textures, or shapes in an image. Because the
same filter is applied across all regions of the input (a concept called weight
sharing), the network can detect these features regardless of their position
in the image.

Once trained, the CNN has filters that activate strongly when their

33

learned features are present in the input. This means the network effectively
highlights the regions of the input that are most relevant for classification.
By stacking multiple convolutional layers, the CNN can learn a hierarchy
of features, with earlier layers detecting simple patterns and deeper layers
combining them into more complex representations like objects or faces.
In essence, CNNs are capable of automatically learning to detect impor-
tant features in the input data, adjusting filter weights during training to
focus on meaningful patterns and building hierarchical representations that

enable accurate classification or recognition tasks.

Mathematical Formulation CNNs follow a series of operations to pro-

cess input data and learn the underlying patterns:

1. Convolution Operation:

For an input image (or feature map) X € R#*WxCn <where H is the
height, W is the width, and C}, is the number of input channels, the

convolution operation with a filter (kernel) K € R¥#**w>Cin produces an

output feature map Y € RH *W'xCout.

kH kW Cln

ZZZK;(TSTCL z+m 1,j4+n—1

m=1n=1 =1

where:

° Y;(j) is the output at position (7, j) for output channel c.

. anjﬁ) is the filter weight at position (m,n) connecting input channel

¢ to output channel c.

e The output dimensions H' and W’ depend on the input size, filter size,

padding, and stride.

2. Activation Function:

After convolution, an activation function ¢ is applied element-wise:

A =¢(Y)

Common activation functions include:

34

e ReLU (Rectified Linear Unit): ¢(z) = max(0, 2)
e Sigmoid: ¢(z) = —1

1+e—*=

e Tanh: ¢(z) = tanh(z)

3. Pooling Operation:

Pooling layers reduce the spatial dimensions by applying a pooling func-

tion over non-overlapping or overlapping regions:

P =pool (AY) | r € Ry,s € R;)

where pool could be:

e Max Pooling: Takes the maximum value within the region.

e Average Pooling: Computes the average value within the region.

4. Fully Connected Layers:

The output of the convolutional and pooling layers is flattened into a

vector and passed through one or more fully connected layers (Section

2.4.2).

5. Loss Function and Optimization:

The network’s parameters are learned by minimizing a loss function
L(y,y) using optimization algorithms like stochastic gradient descent
(SGD) or Adam. Backpropagation is used to compute gradients with

respect to the parameters.

Assumptions Underlying CINN CNNs are based on several key as-

sumptions:

e Local Connectivity: Assumes that local pixels are more related than

distant pixels, allowing the use of small filters to capture local patterns.

e Shared Weights (Stationarity): The same filter (set of weights) is
applied across the entire input, assuming that the features are transla-

tionally invariant.

e Sufficient Data: Requires large amounts of labeled data to effectively

learn complex patterns.

35

Chapter 3
Methods and Experiments

This chapter details the methods and experiments conducted in the audio
deepfake detection research. The chapter is divided into three main sections:

Dataset, Feature Engineering, and Models.

3.1 Dataset

A deep understanding of the dataset is fundamental as it forms the founda-
tion of the machine learning models developed for this research. The section
is divided into two main parts: the selection of the dataset and the prepro-
cessing steps applied to it. The selection part elaborates on the importance
of choosing the right dataset, highlights the strengths and limitations of
the chosen dataset, and briefly summarizes other datasets used in similar
research. The preprocessing part describes the transformations performed
on the data, which are essential for ensuring the quality and consistency of
the dataset.

3.1.1 Dataset Selection

Selecting the appropriate dataset is critical for developing robust audio
deepfake detection models. Four main factors contribute to the effectiveness

of a dataset in this domain:

e Diverse Speaker Voices: A comprehensive dataset should include a wide
range of speaker voices to ensure the model can generalize across different
vocal characteristics. This diversity includes variations in accent, tone,

pitch, and speaking style.

36

e High-Quality T'TS Algorithms: it is essential to include samples generated
by state-of-the-art Text-to-Speech (TTS) algorithms. This ensures that
the model is trained to detect the latest synthetic speech technologies,
which are often more sophisticated and harder to identify. Including
diverse TTS algorithms is fundamental to training a robust model that

can detect a wide range of deepfake techniques.

e Number of Utterances: The dataset should contain a sufficient number
of utterances to train a deep learning model effectively. A larger dataset
allows the model to learn more complex patterns and generalize to unseen
data.

e Gender Balance: To avoid gender bias and ensure the model performs
equally well on male and female voices, the dataset should have a balanced

representation of genders.

The Fake or Real (FoR) dataset proposed by Reimao et al. [32] aligns well
with the outlined criteria. It includes 140 different real speakers and 33
synthetic voices generated by seven state-of-the-art commercial and open-
source TTS systems. The dataset comprises over 84,000 fake utterances
and 111,000 real utterances, both of which are also available in a gender-
balanced version. A notable feature of the FoR dataset is its test set, which
contains audio samples from a TTS algorithm not present in the training
set, thus enabling the evaluation of the model’s generalization capabilities.

Two limitations of the dataset are the presence of only TTS-generated
fake utterances and the lack of noise and environmental variations. How-
ever, the latter can be addressed by augmenting the dataset with additional
samples containing background noise and other environmental factors. The
former is not a problem for this research, as the focus is on detecting T'TS-
generated deepfake audio.

Furthermore, the dataset includes several versions. The original dataset,
“for-original,” contains the raw audio files. “For-norm” is the normalized
version mainly used in this project, with preprocessing steps detailed in the
next section. The “for-2seconds” version truncates and balances the data,
resulting in 17,870 utterances. Additionally, to simulate real-world attacks,
the re-recorded version, “for-rerec,” mimics synthetic speech generated on
one device and recorded on another.

Several other datasets are widely used in the field of audio deepfake

detection:

37

e ASVspoof Datasets: The ASVspoof challenge series has produced sev-
eral datasets focused on protecting automatic speaker verification sys-
tems from spoofing attacks [33] and [23]. The ASVspoof 2021 dataset
also includes audio deepfake samples, which consider data compression
effects [34].

e ADD Datasets: The ADD (Audio Deepfake Detection) challenge series
has released two datasets, ADD 2022 [35] and ADD 2023 [36], aiming at
covering many real-life and challenging scenarios not covered by existing
datasets. Specifically, the ADD 2023 dataset focused on localizing the
manipulated intervals in a partially fake utterance and pinpointing the

generation source for any fake audio [19].

e In-the-Wild Dataset: This dataset was proposed by Muller et al. [37]
to test the generalization capabilities of audio deepfake detection mod-
els. The authors collected deepfake audio recordings of celebrities and

politicians and provided them with their real counterparts.

3.1.2 Dataset Preprocessing

The transformations applied can significantly impact the model’s perfor-
mance by enhancing the quality and consistency of the data. The ”for-
norm” version of the FoR dataset underwent several preprocessing steps

detailed in the paper by Reimao et al. [32] and briefly summarized below:

e Format Conversion: The audio files were converted to the WAV format,

preferred for machine learning applications.

e Volume Normalization: The audio files were normalized to 0dBFS to

avoid volume to be a distinguishing factor.

e Resampling: The audio files were resampled to 16 kHz to ensure unifor-

mity across the dataset.

e Channel Selection: The synthetic audio was mono and the real audio was
stereo, therefore the synthetic audio was converted to mono to avoid the

model learning to distinguish between the two.

e Silence Removal: Silence segments at the beginning and end of each audio

file were removed.

38

e Gender and Class Balancing: The two classes were balanced in terms of
gender and number of samples, resulting into a reduction of the dataset

size to 69,400 utterances.

3.2 Feature Engineering

Feature engineering is fundamental in developing machine learning mod-
els. In audio deepfake detection, the aim is to convert raw audio data into
a format that mathematical models can effectively process. This section
outlines the feature engineering process, starting with the preliminary deci-
sions regarding the extraction hyperparameters. Subsequently, the techni-
cal choices for each feature type are documented, including the number of
features extracted and any mathematical transformations applied.

In this research, both traditional machine learning models and CNN
deep learning models are used, requiring different input data formats: 1D
for traditional models and 2D /3D for CNNs. Each feature type is analyzed
in two versions: one where features are used “raw” as input to classifiers,
and another where features are processed through a CNN, and the resulting
neural features are used as input. Due to these differences, both the extrac-
tion hyperparameters selection and the practical extraction details must be
discussed separately for the two versions. Therefore, in the following sec-
tions, there will be a distinction between the raw features approach and the

neural features approach.

3.2.1 Feature Extraction Hyperparameters

Extracting high-quality features from audio data involves several consid-
erations, such as the extraction interval, window length, and hop length.
The complexity arises from the interdependence of these choices; optimal
settings for one feature type may not be suitable for another. Additionally,
different models may respond differently to these configurations, making
the search space for possible solutions enormous. Given the impracticality
of exploring all combinations, a greedy approach was adopted to efficiently
identify the best settings, trying to minimize compromises at the same time.
To achieve this, an experimental approach was used to select intervals, fea-
ture types, and hop and window lengths based on the model’s performance.

The approach, illustrated by algorithm 1 consists of three phases:

39

Algorithm 1: Feature Engineering Process
Data: Audio dataset, list of classifiers C, list of feature types F', list of
extraction intervals I, list of hop-window length combinations H

Result: Optimal feature extraction settings

Phase 1: Evaluate All CFI Combinations
foreach classifier c € C do
foreach feature type f € F' do
foreach interval i € I do
Evaluate classifier ¢ with feature type f and interval ;
Store performance metrics on train, test, and val set;

end
end

end

Phase 2: Select Best Feature Types and Intervals
Select the top-performing combinations of feature types Fpes, intervals
Ipest based on performance metrics and two classifiers Chegy;

Phase 3: Investigate Hop and Window Length Effect
foreach classsifier ¢ € Cpesy do

foreach feature type f € Fpess do

foreach interval i € Ijes; do

foreach hop-window combination h € H do
Evaluate classifier ¢ with feature type f, interval 4, and

hop-window combination h;
Store performance metrics on train, test and val set;
end
end

end
end

Select the optimal settings based on final performance metrics;

1. Evaluate All Possible CFI Combinations: This phase involves testing all

combinations of classifiers (C), feature types (F), and extraction intervals
(D).

2. Select the Best Feature Types and Intervals: The best performing combi-

nations of feature types and intervals are chosen for further investigation.

3. Investigate the Effect of Hop and Window Length: The impact of differ-
ent hop and window lengths is analyzed on the previously selected best

combinations.

The subsequent paragraphs detail the hyperparameters considered for the

feature engineering experiments.

40

Raw Features Approach

The traditional ML experiments considered the following hyperparameters:

4 classifiers: Random Forest, Support Vector Machine, CatBoost and

Logistic Regression.

2 hop lengths (wl/4, wl/2) and 5 window lengths (256, 512, 1024, 2048,

4096), resulting in 10 hop-window combinations.

9 feature types (mel_spec, mfcc, cqt, chroma_stft, spectral_centroid, spec-

tral_bandwidth, spectral_rolloff, zero_crossing_rate, rms).

4 extraction intervals (0.5s, 1s, 1.5s, 2s).

Neural Features Approach

The DL experiments were conducted slightly differently according to the
CNN model. In the case of MobileNetV3 the setup was similar to the ML

models, with fewer feature types and intervals due to the model’s complex-

ity:

4 classifiers: Random Forest, Support Vector Machine, CatBoost and
XGBoost.

2 hop lengths (wl/4, wl/2) and 5 window lengths (256, 512, 1024, 2048,

4096), resulting in ten hop-window combinations.

6 feature types (mfcc, cqt, chroma_stft, rms, spectral rolloff, zero_crossing rate).

4 extraction intervals (1s, 2s).

For VGG16, only the Random Forest classifier was used, as it outperformed
others in prior experiments. Various VGG16 layers were tested as feature
extractors: specifically the last convolutional layer, the penultimate, and
the antepenultimate, with pooling incorporated in VGG16. Consequently,

the hyperparameters considered for the VGG16 experiments were:

e 1 classifiers: Random Forest.
e 3 layers of VGG16 (layer 43, layer 33 and layer 23).

e 2 hop lengths (wl/4, wl/2) and 5 window lengths (256, 512, 1024, 2048,

4096), resulting in ten hop-window combinations.

41

Type Model Classifiers Layers Hparams

CNN MNETv3 RF, SVM, CatBoost, XGBoost last table 3.2
VGG16 RF 43, 33, 23 table 3.2
ML - RF - table 3.2
- SVM - table 3.2
- CatBoost - table 3.2
- LR - table 3.2

Table 3.1: Feature Engineering Hyperparameters - Part 1

Type Features Intervals (s) Win Lengths Hop Lengths
(WL)

CNN MFCC, CQT, 1,2 256, 512, 1024, WL/4, WL/2
Chroma, RMS, 2048, 4096
SR, ZCR

ML Mel, MFCC, 0.5,1,1.5 2 256, 512, 1024, WL/4, WL/2
CQT, Chroma, 2048, 4096
SC, SB, SR,
ZCR, RMS

Table 3.2: Feature Engineering Hyperparameters - Part 2

e 6 feature types (mfcc, cqt, chroma_stft, rms, spectral rolloff, zero_crossing rate).
e 4 extraction intervals (1s, 2s).

A summary of the hyperparameters considered for the feature engineering

experiments is provided in tables 3.1 and 3.2.

3.2.2 Extraction Details

The extraction process differs based not only on whether the features are
used in their raw form or processed through a CNN, but also on the feature
type within the same model category. Specifically, it is possible to differ-
entiate between features that produce multiple values per time frame (e.g.,
MFCC, CQT, Chroma) and those that produce a single value per frame
(e.g., RMS, ZCR).

Raw Features Approach

Raw features that generate multiple values per time frame include Mel Spec-
trogram, MFCC, CQT, and Chroma. For these features, the number of

extracted values per time frame is user-specified. The extraction interval,

42

window length, and hop length determine the number of time frames. For
example, to extract 20 MFCC features from a 2-second interval with a win-
dow length of 1024, a hop length of 256, and a sampling rate of 16 kHz, we
would have:

2sx 16k H z = 32000 samples 32000 samples/256 hop length = 125 frames

These frames are made up of 1024 samples each. Each frame is trans-
formed into 20 MFCC features, resulting in a 20 x 125 matrix for the 2-
second interval. To convert this into a 1D input for classifiers, the matrix is
averaged along the time axis, yielding a 20-dimensional vector. This process
is similarly applied to other feature types. While this method loses time
information, it preserves frequency information.

Features that produce a single value per frame include Spectral Cen-
troid, Spectral Bandwidth, Spectral Rolloff, Zero Crossing Rate, and RMS.
Averaging these features over time would result in a single value per inter-
val. To avoid this, multiple values were retained for each interval by not
averaging along the time axis. The number of features may be controlled by
adjusting the window length and hop length for a given interval; the larger
the hop length, the fewer the extracted features. This approach retains time
information but provides less frequency information.

Notably, the feature engineering experiments on raw features were based
on a subset of the data. This latter was made up of 18000 training audio
files, 3600 validation audio, and the same amount of test audio. The subset
was reduced to 3000, 750, and 750 audio files for the hop and window length
experiments. In all cases, the data points are evenly distributed across
fake and real classes, using undersampling and oversampling techniques to
address possible class imbalances introduced by the different durations of
fake and real audio files.

The scikit-learn library was used for the models, with the default
parameters for each classifier while the 1ibrosa and torchaudio libraries

were used for the feature extraction.

Neural Features Approach

In the neural features approach, the feature representation was transformed
from a 1D vector to a 2D image, where the x-axis represented time frames,
and the y-axis displayed feature values. This transformation balanced com-
putational complexity and information preservation by extending the fea-

tures to an image size of 112 x 112 pixels.

43

For features that produced a single value per frame, the 2D extension
was achieved by stacking these values along the y-axis to reach 112 values.
For features with multiple values per frame, the process was more complex.
MFCC could directly generate 112 values, and Chroma was automatically
extended to 112 using the Librosa function. However, CQT, which was
limited to 84 values, was extended to 112 by padding with zeros.

Further processing was required to fit the input shape needed by Con-
volutional Neural Networks (CNNs), which is 3 x 224 x 224. The PyTorch
[38] transforms.Resize function was used to resize the image to 224 x 224
pixels through interpolation. To extend to 3 channels, two approaches were
considered: stacking the 2D image three times along the channel axis, or
creating a CNN 3D Mapper that returned three RGB values for each pixel.
The latter approach, which yielded optimal results, is detailed in Section
3.4.2.

Additionally, pixel values were transformed to the standard image range
[0,255]. Since some features produced negative values, a min-max scaling
was applied, followed by multiplication by 255 and conversion to integers.
The scaling parameters were calculated on the training set and applied to
other sets to prevent data leakage. To enhance robustness against outliers,
the minimum and maximum values were computed using the 5th and 95th
percentiles as empirically tested optimal values.

Compute the 5th and 95th percentiles
Q1 = np.percentile(train_data, 5)

Q3 np.percentile (train_data, 95)
IQR = Q3 - Q1

Compute the min and max values
data_min = Q1 - 1.5 * IQR
data_max = Q3 + 1.5 *x IQR

Listing 3.1: IQR based Min-Max Scaling for images

The last step was to prepare the data for the CNN pre-trained mod-
els. All the necessary transformations were applied with the ready-to-use
PyTorch transform functions for the specific CNN model, VGG16_Weights.
IMAGENET1K_V1.transforms ' for VGG16 and MobileNet_V3_Small_Weights.
IMAGENET1K_V1.transforms ? for MobileNetV3.

https://pytorch.org/vision/main/models/generated/torchvision.models.
vggl6.html

’https://pytorch.org/vision/main/models/generated/torchvision.models.
mobilenet_v3_small.html

44

VGG16_Weights.IMAGENET1K_V1.transforms
VGG16_Weights.IMAGENET1K_V1.transforms
MobileNet_V3_Small_Weights.IMAGENET1K_V1.transforms
MobileNet_V3_Small_Weights.IMAGENET1K_V1.transforms
https://pytorch.org/vision/main/models/generated/torchvision.models.vgg16.html
https://pytorch.org/vision/main/models/generated/torchvision.models.vgg16.html
https://pytorch.org/vision/main/models/generated/torchvision.models.mobilenet_v3_small.html
https://pytorch.org/vision/main/models/generated/torchvision.models.mobilenet_v3_small.html

1D Feature Vector Transform to 112x112 Image

Convert to 3 Channels <€ Resize to 224x224

Scale to [0, 255] Apply CNN Transformations

Figure 3.1: Neural Features Extraction Process

The entire process is summarized in Figure 3.1

Due to the increased computational complexity of deep learning mod-
els, experiments with neural features used a smaller data subset consisting
of 3000 training audio files, 750 validation audio files, and 750 test audio
files. Data points were evenly distributed across fake and real classes using
PyTorch’s torch.utils.data.WeightedRandomSampler.

The torchvision library was used for vgg16_bn and MobileNetV3 pre-
trained CNN models, while scikit-learn, librosa and torchaudio li-

braries were used respectively for the models and feature extraction.

3.3 ML Models

In this section are discussed the traditional machine learning models used
in the audio deepfake detection experiments, starting from the base model
choices and moving to the methods used for improving the model’s perfor-

mance.

3.3.1 Base Models

The initial step in developing a detection model involved establishing base-
line models. Four classifiers were selected for this purpose: Random Forest,
Support Vector Machine with an RBF kernel, CatBoost, and Logistic Re-
gression. These classifiers were chosen based on their proven effectiveness
and versatility across various domains. The baseline performance for each
model was defined by identifying the best result achieved across all feature
types and intervals without additional tuning. Additionally, two versions

of each model were considered: one optimized for data learning and the

45

other for generalization. These choices produced models with strong initial

performance, setting a solid foundation for further enhancement.

3.3.2 Features Reduction (RFE)

A possibility to improve the model’s performance is to reduce the number
of features used for training, trying to get rid of irrelevant or redundant
features. Principal Component Analysis (PCA) is a common method for this
purpose, and it demonstrated effectiveness in research by Igbal et al. [39].
However, the primary concern with PCA is its potential to cause difficulties
when used with Random Forests (RF). RF models make branch decisions
based on specific, individual features, whereas PCA generates new features
as combinations of all original features. This can result in unpredictable
behavior and diminished performance when PCA is applied prior to RF,
as the interpretability and decision-making process of RF are disrupted.
Therefore, RFE, which retains the original feature set, was selected as a
more suitable method for this task.

Two main experiments were conducted with different feature sets. The
first experiment considered 20 features per type, while the second expanded
this to 40 features per type (only Chroma STFT was set to 12). For both
experiments, models were evaluated under two scenarios: the first involved
retaining all features types without any selection, the second, instead, in-
volved applying RFE to retain only the top 20, 30, 40, 80, or 100 features
using the scikit-learn RFE implementation as a selector.

The tested models included Random Forest, CatBoost, and XGBoost.
Random Forest and CatBoost were selected because they had performed
best in previous experiments. Additionally, XGBoost was included based
on its proven effectiveness as highlighted in the article by Igbal et al. [39].

These experiments were performed in two modalities. Initially, the Mel
spectrogram was included as a feature type. However, the results were sub-
optimal. An analysis of the features retained by RFE indicated that the se-
lected features were predominantly MFCC and Mel spectrogram, which are
known to provide correlated information. This redundancy likely hindered
performance. Consequently, in the second modality, the Mel spectrogram
was removed to assess whether the remaining features would offer better
generalization. This approach aimed to reduce redundancy and encourage
the selection of a more diverse set of features.

A summary of the RFE process is provided in Algorithm 2.

46

Algorithm 2: Feature Selection Process Using RFE

Data: Feature types F; (e.g., MFCC, CQT), Feature sets Fs, Models M
(e.g., RF, CatBoost, XGBoost), RFE thresholds R (e.g., 20, 30,
40), Normalization techniques N (e.g., RobustScaler)

Result: Optimized feature set for model training

Phase 1: Feature Combination Evaluation
foreach feature type f; € F; do
Generate feature set Fs by retaining 20 and 40 features for each fi;
foreach normalization technique n € N do
Apply n — Fj;
Evaluate Fs by concatenating all retained features;
Train models M using Fj;
Store performance metrics P,y

end

end

Phase 2: Recursive Feature Elimination (RFE)
foreach model m € M do

foreach RFFE threshold r € R do
Apply RFE to Fy to retain top r features based on model

importance;
Train model m on reduced feature set Fj r.;
Store performance metrics P fe;

end

end

Phase 3: Exclusion of Mel Spectrogram Features
Exclude Mel Spectrogram features from Fy;
Generate new feature set Fiy by repeating Phase 1 without Mel Spec;
foreach model m € M do
foreach RFFE threshold r € R do
Apply RFE to Fy;
Train model m on Ffc;
Store performance metrics P fer;

end

end

Phase 4: Analysis and Final Selection

Compare Pyp, Prfe, and P,.fe across all models;

Identify optimal feature set and normalization method based on
performance metrics;

Finalize feature set Fi,; and scaling method for final model training;

47

Normalization

Throughout the above-listed experiments, it became evident that the fea-
tures had vastly different ranges, necessitating normalization. Several nor-
malization techniques were tested, including StandardScaler, MinMaxScaler,
RobustScaler, and MaxAbsScaler from the scikit-learn preprocessing mod-
ule 3. Among these, the RobustScaler consistently yielded the best results,
as it was particularly effective in handling the presence of outliers in the
data, which may have skewed the results of other scalers. Consequently,
the RobustScaler was selected as the normalization technique for the final

models.

3.4 DL Models

In this section are discussed the methodologies and choices behind the defi-
nition of the deep learning models, from the base models to the final models,

illustrating the reasons behind the made choices.

3.4.1 Transfer Learning

Transfer learning has emerged as a powerful technique in machine learning,
particularly in scenarios where large datasets are unavailable or when lever-
aging pre-trained models can significantly enhance performance. In this
project, transfer learning is used to extract features and fine-tune models
for audio deepfake detection. T'wo architectures, MobileNetV3 and VGG16,

were utilized for this purpose.

Feature Extraction

Using the pre-trained models as feature extractors is the first way to transfer
their knowledge to the new task. It consists of processing the audio data
through the extractor module of the pre-trained model and using the output
as input to classifiers.

MobileNetV3 was employed as a feature extractor for the audio data,
as detailed in Section 3.2.1. This model, known for its efficiency and com-
pact architecture, processed different feature types to learn the most rele-
vant aspects for the task at hand. The output from the last layer of Mo-
bileNetV3 (after pooling), a 1D array consisting of 576 values, was then

3https://scikit-learn.org/stable/api/sklearn.preprocessing.html

48

https://scikit-learn.org/stable/api/sklearn.preprocessing.html

fed into traditional classifiers such as Random Forest (RF), Support Vector
Machine (SVM), CatBoost, and XGBoost. Each classifier was trained using
default parameters, leveraging the rich features extracted by MobileNetV3
to enhance classification performance.

VGG16 was used to assess feature extraction at different layers of the
network, focusing on layers 23, 33, and 43 as identified in Listing 3.2. By
examining features extracted at various stages of the VGG16 architecture,
the aim was to determine which layer provided the most effective represen-
tation for the task. To reduce complexity, only RF was used as the classifier
in these experiments.

Load the pre-trained VGG16_bn model
vggl6_bn = models.vggl6_bn(weights=>DEFAULT’)

Initialize a list to hold the indices of the layers

conv_layer_indices = []

Iterate over the model’s features to find Max Pooling
layers
for idx, layer in enumerate(vggl6_bn.features):

if isinstance(layer, nn.MaxPool2d):

conv_layer_indices.append(idx)

Print the indices of the convolutional layers

print ("Indices:", conv_layer_indices)

Output: Indices: [6, 13, 23, 33, 43]

Listing 3.2: VGG16 Layers Selection

The feature extraction process choices for both models is summarized in
Table 3.3.

Choice VGG16 MobileNetV3

Extraction Method Extracted from Layers Extracted from the final
23, 33, 43 layer

Classifiers Random Forest Random Forest, SVM,

CatBoost, XGBoost

Feature Vector Size Varied depending layer 576-dimensional vector

Table 3.3: Comparison of Transfer Learning (Feature Extraction) Choices
for VGG16 and MobileNetV3

49

Fine Tuning

Fine Tuning is the second way to transfer knowledge from pre-trained mod-
els. It consists of training the entire model or a subset of it on the new
task. This process was done in two steps: first, an MLP was trained and
attached to the frozen pre-trained convolutional layers of the original model.
The whole model or a subset of it was then trained. This two-step approach
ensured that the pre-trained models’ learned knowledge was not lost during
fine-tuning.

For MobileNetV3, four different MLP architectures were tested to
identify the best-performing model, as detailed in Table 3.4. Each classifier
was trained for 50 epochs, stopping the training if the validation loss did

not improve for five consecutive epochs.

Version Architecture

MLP1 576 (input
MLP2 576 (

MLP3 576 (input
MLP4 576 (input

— 400 — 2 (output)
— 256 — 2 (output)
— 128 — 2 (output)

— 328 — 128 — 2 (output)

input

N —

Table 3.4: MLP Architectures for MobileNetV3

Once the best-performing MLP was selected, the entire MobileNetV3
model was fine-tuned by lowering the learning rate by a factor of ten (to
0.0001) and training for 80 epochs, with early stopping applied if no im-
provement was seen for eight epochs. The Adam optimizer and CrossEn-
tropyLoss were used throughout the training process.

For VGG16, given its more complex architecture, a single MLP was
trained for each feature type. The MLP architecture used is detailed in
Listing 3.3.

class Classifier (nn.Module):

def __init__(self, vggl6):

super (Classifier, self).__init__Q)

Use existing layers from VGG16
self.linearl =
vggl6.classifier [0] .requires_grad_(False)
self.relul = vggl6.classifier [1]
self .dropoutl = vggl6.classifier [2]
self .relu2 = vggl6.classifier [4]

20

self .dropout2 = vggl6.classifier [5]

Define new layers
self.linear2 = nn.Linear (4096, 2048, bias=True)

self.linear3 = nn.Linear (2048, 2, bias=True)

def forward(self, x):

= self.linearl (x)

= self.relul (x)

= self.dropoutl (x)
self.linear2(x)

= self.relu2(x)

= self.dropout2(x)

LT T T T T -
I

= self.linear3(x)

return x

Listing 3.3: MLP for VGG16

By freezing the first layer of the VGG16 classifier, a huge reduction
in parameters (102, 764,544) was achieved while still maintaining optimal
performance. The fine-tuning process involved freezing the first two convo-
lutional layers of the feature extractor and the first layer of the classifier,
with the remaining layers being trained for 40 epochs using a learning rate
of 0.0001, with early stopping after seven epochs if no improvement was
noted. Adam was used as the optimizer, with CrossEntropyLoss as the loss
function.

The fine-tuning process for both models is summarized in Table 3.5.

Choice VGG16 MobileNetV3
MLPs Tried 1 MLP (Listing 3.3) 4 MLPs (Table 3.4)
MLP Training Epochs 40 epochs, 50 epochs,
and Patience patience 7 patience 5
MLP Learning Rate 0.001 0.001
Frozen Layers Classifier: only first, None

Extractor: up to 27
Fine-Tuning Epochs and 40 epochs, 80 epochs,
Patience patience 7 patience 8
Learning Rate (LR) for 0.0001 0.0001
Fine-Tuning
Optimizer Adam Adam
Loss Function CrossEntropyLoss CrossEntropyLoss

Table 3.5: Comparison of Transfer Learning (Fine-Tuning) Choices for
VGG16 and MobileNetV3

o1

N

3.4.2 3-Channels Mapping

Transfer learning is not the only strategy to enhance model performance.
In fact, particularly when fine-tuning, it can be both computationally ex-
pensive and time-consuming. To address this challenge while improving
the VGG16 model’s performance, a novel approach was introduced to in-
crease its flexibility. This approach involved converting the extracted 2D
feature images into 3D representations by mapping each pixel to an RGB
value. This additional processing step, applied before feeding the data into
the extractor, allowed the model to capture more complex patterns and

interactions within the features. The process is illustrated in Figure 3.2.

3D Mapper | 3x224x224 Classifier

- Extractor | FC 25088 to 4096 Frozen |
Map to 3D image v
| vgg16_bn.features | | Relu and Dropout VGG 16 |
Scale values to [0, 1] v L7

| Adaptive Avg Pooling 7x7 | | FC 4096 to 2048 | —’l Output |
Upsample to 224x224

v

| Flattening

1x112x112—)

| | ReLu and Dropout VGG16 |

Scale to [0, 255]

| FC 2048 to 2 |

T

25088x1

Figure 3.2: 3D Mapper Implementation Schema

The 3D Mapper was implemented using two distinct methods:

e Convolutional Neural Network (CNN)
e Look-Up Table (LUT)

The CNN-based approach, as shown in Listing 3.4, integrated a convolu-
tional module within the model, responsible for converting the 2D feature
image into a 3D image suitable for the classifier. Several configurations
were explored, varying in the number of convolutional layers, kernel sizes,
and scaling methods for the output, as detailed in Table 3.6. The scaling
methods included: no scaling (64-128-3-none), applying a sigmoid function
to scale the values between 0 and 1, and learning the scaling values with
a subsequent sigmoid to ensure output within the [0, 1] range (64-128-3-
learnable). In all cases, the final output was rescaled to the standard image
range of [0, 255].
class Mapper3D (nn.Module):

def __init__(self):

super (Mapper3D, self).__init__()

52

self.convl = nn.Conv2d(in_channels=1,
out_channels=3, kernel_size=1)

self.bnl = nn.BatchNorm2d (3)

self .upsample = nn.Upsample(scale_factor=2,

mode=’bilinear’, align_corners=True)

def forward(self, x): # Input: (B, 1, 112, 112)
x = F.relu(self.bnl(self.convli(x))) # (B, 3,

112, 112)
x = torch.sigmoid(x) # scale to [0, 1]
x = self.upsample(x) # (B, 3, 224, 224)
X = x * 255.0 # scale to [0, 255]

return x

Listing 3.4: 3D Mapper CNN Implementation Example

The LUT-based approach, depicted in Figure 3.3, offers a simpler yet
more computationally efficient alternative. This method directly maps the
2D image to a 3D image using a lookup table, requiring less training time but
offering less flexibility compared to the CNN approach. The key variables
in this method include the number of quantization levels, the o parameter,
and the initialization method (random or linear). These parameters were
adjusted to evaluate their impact on model performance.

Each version of the 3D Mapper was integrated into the VGG16 model
with the feature extractor, and the initial layer of the classifier kept frozen
(Listing 3.3). Only the 3D Mapper and the final layers of the MLP, were
left trainable. The model was trained over ten epochs, using MFCC and
CQT features, as they largely outperformed other feature types in prior
experiments. The Adam optimizer and CrossEntropyLoss were used, with
a learning rate of 0.001, and early stopping was triggered if no improvement

was observed after five consecutive epochs.

Input Tensor (B, 1, S1, ..., Sk)

+ Upsampling Scale Factor 2
Quantization Normalize to Levels +
+ QOutput Tensor (B, N, S1, ..., Sk)
Look-Up Table (LUT) y
+ Rescaling to [0, 255]

Indexing and Linear Interpolation

Figure 3.3: 3D Mapper Look-Up Table Schema

23

Version Name Mapping Architecture

64-128-3-sigmoid CNN Appendix Listing B.1
64-128-3-learnable CNN Appendix Listing B.2
64-128-3-none CNN Appendix Listing B.3
64x5-3x1-sigmoid ~ CNN Appendix Listing B.4

3-1-sigmoid CNN Appendix Listing B.5

5-3-random LUT Levels = 5,a = 3, Init = Random
10-3-random LUT Levels = 10, = 3, Init = Random
20-3-random LUT Levels = 20, = 3, Init = Random
40-3-random LUT Levels = 40, a = 3, Init = Random
10-3-linear LUT Levels = 10, = 3, Init = Linear
10-1.5-linear LUT Levels = 10, = 1.5, Init = Linear

Table 3.6: 3D Mapper Architectures

3.4.3 Combining Fine-Tuning and Mapping

Both fine-tuning and mapping demonstrated significant but distinct im-
provements in model performance: fine-tuning was particularly effective
with MFCC features, while mapping yielded better results with CQT fea-
tures. To further enhance performance, a combined approach that integrates
these two methodologies was explored.

In this combined approach, the four mapper models described in Table
3.6 were subjected to fine-tuning. The fine-tuning process was conducted
as detailed in Section 3.4.1. Specifically, the trainable layers of the end-to-
end (E2E) model included the mapper, the last two layers of the feature
extractor, and the last two layers of the classifier. The model was trained
for 25 epochs, with early stopping applied if no improvement was observed
for five consecutive epochs. The Adam optimizer and CrossEntropyLoss
were used, with a learning rate of 0.0001.

To obtain a 1D vector from the extractor’s 3D output, two strategies

were employed:

Flattening The first strategy focused on preserving as much information
as possible by inserting a flattening layer before the classifier, as illustrated
in Figure 3.2. This flattening layer reshaped the output from (B, 512,7,7) to
(B, 25088, 1,1), which was then fed into the classifier. While this approach
retained all the information, it substantially increased the computational
complexity, as the first fully connected (FC) layer of the classifier had to
process a much larger input vector. To mitigate the impact on training time,

a technique applied in this project was to freeze the entire first classifier

o4

layer. However, this approach did not reduce the model’s memory footprint,

therefore a pooling-based method was explored as an alternative.

Parameters Reduction The second strategy aimed to reduce computa-
tional complexity while preserving performance by replacing the flattening
layer with a pooling layer, as depicted in Figure 3.4. Two pooling techniques

were tested:

e Global Average Pooling: This approach averaged the entire feature map,
reducing the output from (B,512,7,7) to (B,512,1,1). While this dras-
tically decreased the number of parameters, it discarded frequency infor-

mation, which could potentially hinder model performance.

e Column Average Pooling: To retain frequency information, column av-
erage pooling was applied, where the average was taken across columns,
reducing the output from (B,512,7,7) to (B,512,7,1). The output was
then flattened to obtain the final 1D vector. This method struck a balance
between preserving important frequency data and reducing the model’s

parameter count.

The parameter reduction achieved through these pooling methods is
summarized in Table 3.7, which details the versions tested, the number of

parameters involved, and the percentage reduction achieved.

Number of Parameters Percentage Reduction

Version

Total Trainable Total Trainable
Flattening 125884427 20200907 - -
Global Avg Pooling 14988811 12069835 88.1% 40.2%
Column Avg Pooling 16561675 13642699 86.8% 32.5%

Table 3.7: Parameter Reduction through Pooling Techniques

3.4.4 Combining Features

The combination of MFCC and CQT features was explored to harness the
complementary strengths of these two feature types. Indeed, while MFCC
features demonstrated strong learning capabilities, especially in terms of
capturing detailed nuances in the audio signals, CQT features excelled in

generalization, particularly in handling diverse and unseen data.

25

3D Mapper | 3x224x224

Extractor Classifier
Map to 3D image OR
| vgg16_bn.features | | FC 512t0 512 | |FC 3584 to 512|
Scale values to [0, 1] ¥ ¥ v

1x112x112>] | Adaptive Avg Pooling 7x7 | ReLu and Dropout (p=0.5) | —2—)| Output |
Upsample to 224x224 M v ¢
Global Avg | OR | C0lumn Avg | FC512t02 |
+ Flattenin
Scale to [0, 255]
|—512X1 OR 3584)(14

Figure 3.4: 3D Mapper Schema with Parameters Reduction

3D Mapper (Frozen) Extractor (Frozen) Combiner Classifier
Best Mapper Trained Extractor Trained Stack the 2 Classifier Trained
on MFCC Features on MFCC Features Extracted Vectors on MFCC Features

Input

(2 images)~ 112112 yrx2 OR —2-»] Output
Best Mapper Trained Extractor Trained Take the Maximum Classifier Trained
on CQT Features on CQT Features Column-wise on CQT Features

I iy

TXx 1

Figure 3.5: Ensemble DL Model Schema

Several methods exist for combining multiple features, such as concate-
nation, averaging, stacking, or employing ensemble methods. Given that
we already had well-calibrated models for each feature type, the ensemble
method was selected. Specifically, the ensemble model combined the out-
puts from the MFCC and CQT models by taking the maximum value of
their respective extractor outputs, effectively integrating the strengths of
both features at the model level.

The ensemble methodology is illustrated in Figure 3.5, where the out-
puts of the two extractors (one trained on MFCC and the other on CQT)
are combined by taking the maximum value column-wise. This approach
preserves the individual strengths of each feature set while creating a more
robust combined model.

Following the same strategies outlined in Section 3.4.3, two techniques
were employed to convert the 3D output of the extractor into a 1D vector:
Flattening and Pooling for parameters reduction. For each scenario, the best
mapping version for each feature type was selected (i.e. models leveraging

both 3D Mapping and Fine-Tuning), and three model types were tested:

1. Model A: Utilized the best-performing models for each feature type (map-

per and extractor), with the classifier trained solely on MFCC features.

2. Model B: Similar to Model A, but with a classifier trained solely on CQT

features.

26

3. Model C: This model was trained on the newly combined features, start-
ing from the weights of the previous models, aiming to further refine the

ensemble’s performance.

It is worth noting that Model A and Model B were not retrained on the
combined features. Specifically for Model A the classifier of the best MFCC
based model from previous experiments was used, with its learned weights.
The same was done for Model B, using the best CQT based model. Model
C was trained for 35 epochs, with an early stopping patience of ten epochs,
using the Adam optimizer and CrossEntropyLoss, with a learning rate of
0.0001.

3.4.5 Final Model

Based on the previous sections, the best performing model was selected
for the final evaluation. Given that earlier evaluations were conducted on
small subsets of the data (i.e., test and validation sets), the final models
were trained and evaluated on the full dataset to provide a more reliable
estimate of their performance.

Three versions of the final model were proposed, each following the ar-

chitecture depicted in Figure 3.5 but differing in their training strategies:

e DeepSpectraNet: In this version, the submodels handling MFCC and
CQT features were trained separately. The final model was formed by
combining these submodels with the torch.max operation on the extrac-
tor’s output, and only the final classifier was trained end-to-end (E2E),

with the first fully connected (FC) layer and the rest of the model frozen.

e DeepSpectraNetLite: This model is similar to DeepSpectraNet but
utilizes global average pooling instead of flattening to reduce the number
of parameters. This approach was aimed at creating a lighter version of

the model with reduced computational complexity.

e DeepSpectraNetFlex: Starting from the weights of the flattening-
based submodels trained separately on a data subset, this version was
trained E2E on the full dataset. The only frozen layers were the first
two convolutional layers of the submodels extractors and the first fully

connected layer of the classifier.

57

3.4.6 Fully E2E Version

One of the limitations of the previous models, is their reliance on pre-
determined audio features such as Mel-spectrograms, MFCCs, and CQT.
This makes those models highly task-specific, as different audio-related
problems may require different types of features. To address this issue
and craft a more generalizable solution, was developed a fully end-to-end
(E2E) model that can autonomously extract relevant audio features directly
from raw waveform data. This allows the model to be used across a broader
range of audio data without the need for hand crafted feature engineering.
To implement this end-to-end approach, a new preprocessing module was
embedded into the DeepSpectraNetFlexr model. This module is designed to
take raw audio as input and produce two different 112x112 images, which
are then processed by the existing model (as shown in Figure 3.5). The
new module leverages the outcomes gained from previous experiments, thus
it focuses on capturing frequency-based representations of the audio signal

and consists of three main blocks (Figure 3.6):

Signal Preprocessing Block This block is responsible for converting
the raw audio waveform into a time-frequency representation. It achieves
this using a Short-Time Fourier Transform (STFT) with a Hann window.
Two different STFT operations are performed with varying window and
hop lengths to generate two complementary images. One image focuses
on shorter time frames, capturing fine temporal details, while the other

emphasizes longer time frames to capture broader frequency information.

Convolutional Block The time-frequency representations generated in
the previous block are further processed by a convolutional block. This block
enhances the images by selectively focusing on the most important regions of
the spectrogram. Each image is passed through three convolutional layers,
with 32, 64, and 128 filters, respectively. Each convolutional layer is followed
by batch normalization, a ReLU activation, and a Channel and Spatial
Attention Module (CSAM).

The CSAM enables the model to learn which features are most critical
by applying both channel and spatial attention. Channel attention learns a
weighting vector that scales each filter’s contribution, while spatial atten-
tion applies a similar weighting mechanism across the pixels of the image.

These weights are computed using the mean and maximum values of the

o8

activations and are learned during end-to-end training.

Shape Adaptation Block The shape adaptation block ensures that the
output images from the convolutional block match the dimensions expected
by the downstream modules in the original DeepSpectraNetFlex model. This
allows the two newly generated images to be seamlessly integrated into the

pre-existing architecture.

Training DeepSpectraNetE2E The fully end-to-end model, named Deep-
SpectraNet E2E, was trained for 30 epochs with an early stopping criterion
based on validation loss, using a patience of seven epochs. The Adam op-
timizer was employed, with a learning rate of 0.0001 and a weight decay of
0.00001. The same frozen layers as DeepSpectraNetFlexr were applied, in-
cluding the first two convolutional layers of the submodels’ extractors and
the first fully connected layer of the classifier. CrossEntropyLoss was used

as the loss function to optimize classification performance.

Conv Block
Signal Processing Block Convolution
Kernel (3, 3) Shape Adaptation Block
Branch 1 7
STFT - Hann o AdaptiveAvgPool2d
Window: 256 - Hop: 128 | | same operations Batch Normalization (112, 112)
for the two
Raw — Branches > v ¢
Waveform Branch 2 with different
weights ReLu Conv2d
STFT - Hann (128, 1, kernel=1)
Window 1024 - Hop 512 7
Channel and Spatial ¢
Attention Module Two Images
1x112x 112

“Repeat for 3 Layers

Figure 3.6: Fully E2E Model Additional Preprocessing Module

29

Chapter 4

Results and Explainability

4.1 Experimental Setup

In this section, we outline the experimental setup used for training and
evaluating the models. Two primary environments were employed: a local
machine for initial testing and development, and the Lightning AI Cloud *

for large-scale, final model training and optimization.

4.1.1 Local Machine

The local machine used for the experiments is a Apple MacBook Pro (M1
Pro) 2. Tt features an Apple M1 Pro chip, with an 8-core CPU that includes
6 performance cores and 2 efficiency cores. The machine is equipped with a
14-core GPU and a 16-core Neural Engine, providing up to 200GB/s mem-
ory bandwidth and 16GB unified memory.

The programming language used for the experiments is Python 3.11.5 [40].
To manage the environment and dependencies, a virtual environment run-

ning Python 3.11.5 was used. The primary libraries employed include:

e Machine Learning Models: Scikit-learn
e Metrics: Scikit-learn Metrics, pyeer

e Statistics: Scipy

e Neural Networks: PyTorch

e Audio Processing: Torchaudio, Librosa
e Data Handling: Pandas, Numpy

e Visualization: Matplotlib, Seaborn

Thttps://lightning.ai
2https://support.apple.com/en-md/111902

60

e Pretrained Models: torchvision models, including vggl6_bn(weights=
> IMAGENET1K_V1’), mobilenet_v3_small (weights=’IMAGENET1K_V1’)

4.1.2 Lightning AI Cloud

For more demanding training, the Lightning Al cloud was utilized, leverag-
ing the power of NVIDIA L4 GPUs. The virtual environment on the cloud
machine also ran Python 3.11.5 with similar library setups as the local ma-

chine, ensuring consistent execution of models across both platforms.

4.2 Evaluation Metrics

During the experiments, the primary metrics used to evaluate the perfor-
mance of the models were Balanced Accuracy and F1 Score, with a greater
emphasis on balanced accuracy in situations where the choice between the
two metrics was not obvious. These metrics were selected because they are
well-suited for handling imbalanced data, which was a critical aspect of this
project. For the final evaluation, several additional metrics were considered
to provide a comprehensive assessment of the models’ performance.

Two main categories of metrics are discussed in this section, with a focus

on binary classification problems:

e Threshold-dependent metrics: These metrics are calculated at a spe-
cific threshold setting and include Accuracy, Balanced Accuracy, and F1
Score. They depend directly on the classification threshold used to de-

termine the final output class.

e Threshold-independent metrics: These metrics, including PR AUC,
ROC AUC, and EER, evaluate the model’s performance across a range
of threshold settings. They provide a measure of the model’s ability
to discriminate between the classes irrespective of the specific decision
threshold. This category of metrics is especially useful for evaluating the

performance of binary classifiers at various levels of decision-making rigor.

The threshold-dependent metrics can be derived from the confusion ma-
trix. In a binary classification problem, the confusion matrix consists of

four values:

e True Positive (TP): The model correctly predicts the positive class.

61

vgg16_bn(weights='IMAGENET1K_V1')
vgg16_bn(weights='IMAGENET1K_V1')
mobilenet_v3_small(weights='IMAGENET1K_V1')

e True Negative (TN): The model correctly predicts the negative class.

e False Positive (FP): The model incorrectly predicts the positive class

when the true class is negative (also known as a ”Type I error”).

e False Negative (FN): The model incorrectly predicts the negative class

when the true class is positive (also known as a " Type II error”).

Scenario P N TP FP TN FN Acc. Bal. Acc. F1 Score

A 900 100 890 50 50 10 94.0% 45 % 96.5 %
B 100 900 50 10 890 50 94.0% 745 % 64.1 %

Table 4.1: Different Class Imbalance Scenarios for Metrics Comparison

4.2.1 Accuracy

Accuracy is used in classification tasks to measure the proportion of correct

predictions made by the model.

TP+ TN
TP+TN+ FP+ FN

Accuracy =

This metric represents the fraction of correctly classified instances (both
true positives and true negatives) over the total number of instances in
the dataset. In other words, it quantifies how often the model is correct,
regardless of the class.

While it offers a general overview of model performance, its reliability
reduces in imbalanced datasets, where one class largely outnumbers the
other. In such cases, a model could achieve high accuracy by predominantly
predicting the majority class while neglecting the minority class entirely. An
example is provided in Table 4.1. In scenario A, the model is equivalent to a
random classifier in the negative class, but it achieves a high accuracy of 94%
due to the large number of positive samples correctly classified. The same
holds for scenario B, where the model is equivalent to a random classifier
in the positive class. Therefore, accuracy must be evaluated alongside more
class-sensitive metrics to ensure a fair assessment of model performance

across both classes.

62

4.2.2 Balanced Accuracy

Balanced accuracy addresses the limitations of standard accuracy, ensuring

that both classes contribute equally to the evaluation.

Balanced A =+ (g + T
alanced Ay = o\ 7p PN " TN = FP

Balanced accuracy is the average of the true positive rate (sensitivity)
and true negative rate (specificity). This allows the metric to capture the
model’s performance across both classes without being biased towards the
majority class. Each class’s contribution to the final result is equal, even if
the dataset is skewed.

Looking at the scenarios in Table 4.1, the balanced accuracy for both
scenarios is 74.5%, which is lower than the accuracy metric. This shows
that the balanced accuracy provides a more accurate representation of the

model’s performance in imbalanced datasets.

4.2.3 F1 Score

The F1 Score quantifies test accuracy by harmonizing precision and recall.
Precision is defined as the ratio of correctly predicted positive observations
to the total predicted positives, while recall represents the ratio of correctly

predicted positive observations to all observations in the actual class.

Precision x Recall

F1S =2
core % Precision + Recall
TP TP
where Precision = TPLFDP and Recall = TP FN

The F1 Score, being the harmonic mean of precision and recall, offers a
more balanced measure of a model’s accuracy, particularly useful in scenar-
ios with imbalanced datasets. This metric is sensitive to the performance
of the positive class, highlighting its utility in fields where missing positive
cases (such as fraud or disease) carries a higher risk than missing nega-
tive cases. Therefore, its usage must be carefully considered based on the
problem at hand.

For instance, in Table 4.1, Scenario A shows an F1 Score of 96.5%, indi-

cating a very strong classifier, despite a weak performance on the negative

63

class. Conversely Scenario B has an F'1 Score of 64.1%, suggesting a weaker
classifier, despite the positive class performance is the same as the negative
class in Scenario A, where the F1 Score suggested a strong classifier. This
reflects the F1 Score’s sensitivity to the positive class, which is instead bal-
anced in the Balanced Accuracy metric, with this latter returning the same
value for both scenarios.

In summary, the F1 Score is indeed a valuable metric in scenarios where
false negatives are more critical than false positives, however if it is not the
case, balanced accuracy should be considered for a more uniform assess-
ment across classes, particularly when equal importance is assigned to both
positive and negative classifications. For this reason the balanced accuracy

was chosen as the primary metric for model evaluation in this project.

4.2.4 PR AUC

The Precision-Recall Area Under the Curve (PR AUC) reflects the rela-
tionship between precision and recall for different probability thresholds.
Thereby it provides a comprehensive evaluation of the model’s performance.

The PR AUC is derived from the Precision-Recall curve, which plots the
precision (y-axis) against the recall (x-axis) for every possible cutoff. The
area under this curve represents the model’s ability to correctly classify the
positive class across different threshold settings. A higher area indicates
better performance, with a perfect score of 1 indicating that the classifier
can achieve high precision without sacrificing recall.

PR AUC provides a more informative measure in situations where pos-
itive class predictions are more critical, while it may be misleading in sce-
narios where both classes are equally important as it struggles to capture
the negative class’s performance. Thereby, as seen for F1 Score, it finds
practical applications in fraud detection or disease screening, where missing

a positive case could be detrimental.

4.2.5 ROC AUC

The Receiver Operating Characteristic Area Under the Curve (ROC AUC)
evaluates a model’s discriminative ability at various threshold settings by

plotting the true positive rate (TPR) against the false positive rate (FPR).

TP
True Positive Rate (TPR) = TP+ FN Recall

64

FP
False Positive Rate (FPR) = TN+ FP

The ROC curve plots TPR against FPR, illustrating the trade-offs be-
tween true positive identifications and the false positive rate at which they
occur. An AUC of 1.0 signifies a perfect model that discriminates per-
fectly between the classes, while an AUC of 0.5 indicates a model with no
discriminative ability, equivalent to random guessing.

Conversely from PR AUC, which focuses on the positive class, ROC
AUC provides a global view of the model’s performance across both classes.
This makes it suitable for situations where the costs of false positives and
false negatives have similar importance. ROC AUC remains robust across
class imbalances, making it a reliable metric even when positive and negative

classes are not equally represented.

4.2.6 Equal Error Rate (EER)

Equal Error Rate (EER) is a metric commonly used to determine the thresh-
old value where the false positive rate (FPR) and the false negative rate
(FNR) are equal. In the context of binary classification, this metric is par-
ticularly useful in scenarios where the cost of false positives is equivalent to
the cost of false negatives.

The EER can be derived from the point on the ROC curve where the line
y = 1—x intersects the ROC curve. This point means a balance between the
false acceptance rate (FAR, synonymous with FPR) and the false rejection
rate (FRR, synonymous with FNR). Mathematically, the EER is the specific

value where:

FPR=FNR where FNR=1-TPR

EER is particularly useful in security systems like biometric verification,
where it’s crucial to balance between denying access to valid users and
granting access to imposters.

By focusing on the point where FPR equals FNR, the EER provides a
clear criterion for comparing different biometric systems or any classification
system where decision thresholds are adjustable and equal importance is

given to both types of errors.

65

4.3 Results

As explained in Section 3.1.1, the test set consists of synthetic data gener-
ated by a generative audio model that is not included in the training set.
This allows us to use the test set results to evaluate the model’s general-
ization capability. In contrast, the validation set results reflect the model’s
ability to learn from the data. Therefore, in the following section, we will
consistently distinguish between the validation and test set results.

During the experiments, the primary metrics used to evaluate the perfor-
mance of the models were Balanced Accuracy and F1 Score, with a greater
emphasis on balanced accuracy in situations where the choice between the
two metrics was not obvious. The reason behind this choice is tackled in

Section 4.2, specifically in the subsection 4.2.3.

4.3.1 Traditional Machine Learning

In this section are presented the results of the approaches based on tradi-
tional machine learning models, from the feature engineering phase (encom-
passing the extraction interval, feature type, and hop and window length
impact) to the final models.

All results related to specific components of feature engineering are pre-
sented as averages. For completeness, the detailed results are available in

the Appendix, specifically in Figures A.1 and A.2.

Extraction Interval

The extraction interval refers to the length of the audio segment from which
features are extracted, consequently it directly influences the number of
extracted data points (with longer intervals yielding fewer data points).
Since in this phase only a subset of the data is used, the number of data
points may have a large influence, therefore, models were tested under two

scenarios:

e Equalized (Figure 4.1a): The number of data points was equalized across
all intervals to enable an unbiased comparison. The number was chosen
as the minimum number of data points across all intervals, 4000 in this

case.

e Not Equalized (Figure 4.1b): The number of data points varied with

the interval length, leading to fewer data points for shorter intervals.

66

Mean (F1 + Balanced Accuracy) by Interval and Evaluation Set Mean (F1 + Balanced Accuracy) by Interval and Evaluation Set

Val mmm Test Val ~ mmm Test
08 0.77 0.8 0.76 0.78 0.79

0.75 0.74
0.71 0.73

0.6 0.59 0.6
06 0.56 0.56 056 0.58 06 A5

Mean Value
Mean Value

o o
N W
o o
oW

o
e
o
e

o
o
o
o

0.5 1 15 2 ’ 0.5 1 15 2
Interval Interval

(a) (b)

Figure 4.1: Avg Extraction Interval Impact Across Models: a) equalized
num. samples across intervals, b) varying num. samples across intervals.

specifically 30000, 15000, 8000, and 4000 data points for intervals of 0.5,

1, 1.5, and 2 seconds respectively.

As expected, the non-equalized scenario exhibited slightly better perfor-
mance. Interestingly, both scenarios demonstrated an increasing trend in
performance as the extraction interval increased, particularly in the valida-
tion set. Unfortunately, it was not possible to evaluate larger intervals, as
the majority of the fake test data was approximately 2 seconds long. Intro-
ducing padding to the shorter intervals would have introduced bias into the
evaluation.

Based on these results, only two out of the four extraction intervals were
retained for subsequent experiments on hop and window length: 2 seconds,
as it demonstrated the best performance, and 1 second, to provide a more

comprehensive analysis.

Feature Type

In Figure 4.2, the performance of various feature types is depicted, with
Figure 4.2a illustrating the results when the number of samples is equalized
across intervals, and Figure 4.2b showing results with a varying number of

samples across intervals.

67

10 Mean (F1 + Balanced Accuracy) by Feature and Evaluation Set

0.93 val N test

0.8

o
o

Mean Value

o
IS

0.2

0.0

Features

(a)
10 Mean (F1 + Balanced Accuracy) by Feature and Evaluation Set
0.94 val . test 0.92
0.79
0.8 0.77 0.75
0.7 0.7 0.71 0.7
0.64 0.66
! 0.61
0.6 S5 0.59 0.58
0.54
0.49 0.5

Mean Value

o
S

0.2

Features

(b)

Figure 4.2: Avg Feature Type Performance Across Models: a) equalized
num. samples across intervals ; b) varying num. samples across intervals.

The initial observation is that the difference between the two scenarios is
not substantial. The non-equalized variant exhibited only a slight improve-
ment in the performance of all features. Consequently, we can focus on the
non-equalized scenario, as the “data points augmentation” effect should be
leveraged.

What clearly emerges is that the Mel spectrogram and MFCC features
are the top performers, with MFCC showing a slight edge in learning the
data and the Mel spectrogram significantly emerging in generalization. RMS
and CQT also showed potential, although they did not perform as well as
the Mel spectrogram and MFCC. The remaining features demonstrated

uniformly poor performance.

68

For this reason and due to the computational complexity of the models,
only the Mel spectrogram and MFCC features were retained for subsequent

experiments on the hop and window length.

Hop and Window Length

The impact of the hop and window lengths was evaluated for the Mel spec-
trogram and MFCC features, considering 1-second and 2-second extrac-
tion intervals, and using Random Forest (RF) and Support Vector Machine
(SVM) models as classifiers. The RF model was chosen as it demonstrated
the best performance in previous experiments, while the SVM was selected
for being a well-known traditional, non-ensemble model. The results are
illustrated in Figures 4.3a and 4.3b.

The impact of hop and window lengths was not significant, as different
models and features had varying optimal values. For the Random Forest
results, it is interesting to note that MFCCs seem to benefit from shorter
extraction intervals and window lengths. The reasons for this are not en-
tirely clear, but it is possible that MFCCs, which are more focused on high
frequencies, benefit from higher temporal resolution. About the hop length
effect, the results showed a minimal impact, almost null in the case of SVM.

Generally, a 1-second extraction interval appeared to provide better gen-
eralization on the test set, but the SVM showed reduced performance on
the validation set.

At the moment the goal is to find the best possible feature setting to
learn the data, therefore the the 2-second extraction interval was retained.
This choice helped to reduce model complexity and computational time. To
further enhance generalization on the test set, we attempted to combine dif-
ferent features and reduce them using Recursive Feature Elimination (RFE),
as detailed in Section 3.3.2.

Models

In this section are presented the results of the experiments conducted to
find the best traditional machine learning model. The results encompass the
baseline models, the impact of Mel spectrogram features, the effectiveness

of Recursive Feature Elimination (RFE), and the final model evaluation.

Baseline Models Table 4.2 presents the performance of the traditional

ML baseline models. For each classifier, the best results have been ex-

69

RF Balanced Accuracy for Different Hop Lengths and N_FFTs

1s mfcc on test set 2s mfcc on test set 1s mel_spec on test set 2s mel_spec on test set

half

0.77 0.82 [y

0.7

half

0.59 0.58 048 059 049 049 072 071 072 073 071

. WEZE 073 069 0.51 . 073 072 072 075

256 512 1024 2048 4096 256 512 1024 2048 4096 256 512 1024 2048 4096 256 512 1024 2048 4096
1s mfcc on val set

half

half
=
5
N

06 051 05 048 048

quarter
quarter
quarter
o
~N
@
quarter

2s mfcc on val set

1s mel_spec on val set 2s mel_spec on val set

half

half
half
half

quarter
quarter
quarter
quarter

256 512 1024 2048 4096 256 512 1024 2048 4096 256 512 1024 2048 4096 256 512 1024 2048 4096

1s mfcc on train set 2s mfcc on train set 1s mel_spec on train set 2s mel_spec on train set

half

half
half
half

quarter
quarter
quarter
quarter

256 512 1024 2048 4096 256 512 1024 2048 4096 256 512 1024 2048 4096 256 512 1024 2048 4096

SVM Balanced Accuracy for Different Hop Lengths and N_FFTs

1s mfcc on test set 2s mfcc on test set 1s mel_spec on test set 2s mel_spec on test set

half

064 068 066 064 062

half

052 055 052 066 057

half

061 062 063 063 062

half

062 065 067 066 063

0.65 0.68 065 0.65 0.62

quarter
quarter
o
o
@

054 052 07 058 0.62 062 063 063 0.63 0.63 0.65 0.67 066 0.67

quarter
quarter

256 512 1024 2048 4096 256 512 1024 2048 4096 256 512 1024 2048 4096 256 512 1024 2048 4096

1s mfcc on val set 2s mfcc on val set

1s mel_spec on val set 2s mel_spec on val set

half

half
half
half

quarter
quarter
quarter
quarter

256 512 1024 2048 4096 256 512 1024 2048 4096 256 512 1024 2048 4096 256 512 1024 2048 4096

1s mfcc on train set 2s mfcc on train set 1s mel_spec on train set 2s mel_spec on train set

half

half
half
half

quarter
quarter
quarter
quarter

256 512 1024 2048 4096 256 512 1024 2048 4096 256 512 1024 2048 4096 256 512 1024 2048 4096

(b)

Figure 4.3: Impact of hop (y-axis) and window length on: a) Random Forest
performance, b) SVM performance.

tracted from Figure A.2, with separate considerations for scenarios focused
on learning and generalization. The balanced accuracy metric, particularly
relevant in cases of unbalanced data with a predominant positive class,
highlights the Random Forest model using Mel spectrogram features and
a 1.5-second extraction interval as the best for generalization. This model
achieved a balanced accuracy of 77% on the test set, a notable result given
the task’s complexity. On the other hand, the Catboost model, also utiliz-
ing Mel spectrogram features and a 1.5-second extraction interval, excelled
in learning-oriented tasks, achieving a balanced accuracy of 99% on the val-

idation set. These two models were established as baselines for subsequent

experiments.

70

F1 (%) Bal Acc (%)

Classifier Feature Interval (s) Goal

Val Test Val Test

RF MFCC 2 Learning 99 83 98 59
Mel Spec 1 Generalizing 98 85 96 77

MFCC 1 Learning 97 76 96 63

SVM - RBF Mel Spec 2 Generalizing 95 75 91 75
Mel Spec 1.5 Learning 99 86 99 68

Catboost MFCC 0.5 Generalizing 97 79 95 73
LR MFCC 2 Learning 90 55 84 44
Mel Spec 2 Generalizing 91 79 81 80

Table 4.2: Traditional ML baseline results

To increase models’ performance, various feature types were combined,
to leverage their different strengths. The results in Table 4.3 provide a
comprehensive view of the performance differences between models trained
on the full feature set and those with features reduced via Recursive Feature
Elimination (RFE). The comparison between validation (Val) and test set
results sheds light on the models’ capabilities to learn from the training

data and generalize to new, unseen data, respectively.

Impact of Mel Spectrogram Features Considered stand-alone, the
Mel spectrogram features were the best for generalization, but when com-
bined with other features, they behaved oppositely. Including Mel spec-
trogram features generally resulted in high validation performance across
all classifiers but showed varied results in generalization. For instance, the
Random Forest (RF) classifier achieved a balanced accuracy (Bal Acc) of
77% on the test set with Mel spectrograms included, which was outper-
formed (85%) when they were excluded. This pattern is consistent across
the XGBoost and Catboost models, where excluding Mel spectrograms led
to better generalization on the test set, particularly for XGBoost and Cat-
boost, which saw increases of 16% and 13% in F1 scores, respectively.
This suggests that while Mel spectrograms can enhance the model’s abil-
ity to learn from training data, they may introduce redundancy or correlated
information that hinders the model’s ability to generalize to unseen data.
This observation is further supported by the RFE analysis, which indicates
that when Mel spectrogram features were included, the retained features

were predominantly MFCC and Mel spectrograms—potentially leading to

71

overfitting due to the overlap in information.

) F1 (%) Bal Acc (%)
Classifier Feat. per Type Feat after RFE Mel Spec

Val Test Val Test

20 Not Applied Included 97 78 97 77
RF 20 Not Applied Excluded 94 78 95 85
20 40 Included 98 78 97 76
20 30 Excluded 96 92 96 92
20 Not Applied Included 99 72 99 71
40 Not Applied Excluded 98 89 98 88
XGBoost
20 40 Included 99 79 99 77
20 40 Excluded 98 89 98 87
20 Not Applied Included 99 76 99 74
40 Not Applied Excluded 99 87 99 85
Catboost
20 80 Included 99 76 99 74
40 80 Excluded 98 89 98 87

Table 4.3: Traditional ML Results Combining the Features and Reducing
them Using RFE

Effectiveness of Recursive Feature Elimination (RFE) RFE’s ef-
fectiveness in improving model performance is evident, especially when Mel
spectrogram features are excluded. For instance, RF with 30 features re-
tained through RFE and without Mel spectrogram features achieved the
highest test set performance, with an F1 score and balanced accuracy both
at 92%. Similarly, for XGBoost and Catboost, using RFE to select a re-
duced feature set without Mel spectrograms consistently improved test set
performance, achieving balanced accuracy scores up to 89% and 87%, re-
spectively.

The RFE process appears to effectively mitigate overfitting by focusing
the model on the most informative and non-redundant features, thus en-
hancing generalization capabilities. The models’ ability to retain high vali-
dation performance while improving test set performance post-RFE demon-
strates that this method is well-suited for the feature selection task in this

context.

72

Receiver Operating Characteristic - test set

False Positive Rate

Precision-Recall Curve - test set

1.0 2 1.00 4
0.8 1 0.951
g
2 0.90 1
¢ 0.6 1 § .
a ol a
S04 0.85
= L
0.2 1 0.801
- ROC curve (area = 0.98) = PR curve (area = 0.99)
ol 0.75 4
0.0 T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate Recall
Figure 4.4: Final RF Model Curves for Test Set
Receiver Operating Characteristic - val set Precision-Recall Curve - val set
1.0 4 v 1.00
0.98 4 ﬁ
0.8
0.96 -
]
2
g 0.6 § 0.94 1
a s a 0.92 4
[e
2 0.4 S
= L
o 0.90 A
0.2 //’ 0.88 4
, - ROC curve (area = 1.00) 0.86 4 = PR curve (area = 1.00)
0.0 + T T . . - - : : : :
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Recall

Figure 4.5: Final RF Model Curves for Validation Set

Final Model The final Random Forest (RF) model was thoroughly valu-
ated to compare its performance against baseline models and existing state-
of-the-art methods.

The ROC and PR curves (Figures 4.5 and 4.4) provide insights into the
model’s discriminative power and precision across different thresholds. On
the validation set, the final RF model achieved an area under the ROC
curve (AUC) of 1.00, and the PR AUC was also 1.00, indicating excellent
learning capabilities and almost perfect precision-recall tradeoff. The test
set results were similarly robust, with an ROC AUC of 0.98 and a PR AUC
of 0.99, demonstrating strong generalization to unseen data, despite a slight
drop in performance compared to the validation set.

The confusion matrix, presented in Figure 4.6, further highlights the

73

model’s accuracy. The final RF model showed a strong ability to correctly
classify both positive and negative classes, reflecting its balanced perfor-
mance and low misclassification rates on the validation set. On the test set,
most misclassifications were false negatives, indicating that the model was

more likely to incorrectly classify real audio as fake.

Validation Set Test Set

True
True

-0.4 -0.4

-0.2

Predicted Predicted

Figure 4.6: Final RF Model Confusion Matrix

) Acc F1 Bal Acc PR AUC ROC AUC EER
Classifier
Val Test Val Test Val Test Val Test Val Test Val Test
Existing Models
SVM [24] 0.85 0.67 - - - - - - - - _ -
RF [24] 080 0.62 - . - - - -] . _ _
KNN [24] 075 0.62 - - - ; : ; ; . _]

XGBoost [24] 0.70 059 - - - - - - - - - -
LGBM [24] 075 0.60 - - - - - o o
XGBoost [39] - 093 - - - - - - - - - -
RF [32] 0.79 072 - - - oo
DTrees [32] 0.77 0.70 - - - - - - - - - -

Proposed Models

RF-Table 4.2 - - 0.98 0.85 096 0.77 - - - - - -
RF-RFE 099 092 099 094 096 093 0.99 0.99 099 098 0.03 0.07

Table 4.4: Final RF Model Metrics Compared with Baseline Models and
State-Of-The-Art ML

Table 4.4 contrasts the final RF model’s performance with baseline mod-
els and other state-of-the-art machine learning techniques. All the metrics
are calculated using the optimal binary threshold, defined as the one that
maximizes the delta between true positive rate and false positive rate. For
the test set the threshold is 0.58, while for the validation set is 0.42.

74

The proposed RF model with Recursive Feature Elimination (RFE) out-
performed the baseline models significantly, particularly in generalization
metrics, with a balanced accuracy of 0.93 on the test set, coupled with a

96% on the validation set and optimal EER values.

4.3.2 Deep Learning

In this section are presented the results of the approaches based on deep
learning models, from the feature engineering phase to the final models.

Like for the traditional ML approach, even in this case the results con-
cerning specific components of feature engineering are presented as averages.
These averages include metrics, features, and classifiers for MobileNetV3,
and metrics, features, and layers for VGG16. Detailed results are provided
in the Appendix, specifically in Figures A.3 and A .4.

Furthermore it is important to note that due to the similarity of the
information provided by the equalized and not equalized scenarios, only the

latter will be adopted from this point on.

Extraction Interval

Figure 4.7 presents the results of the extraction interval’s impact using the
neural features-based approach. For VGG16 (Figure 4.7b), a peak vali-
dation performance was observed with a 1-second interval, which contrasts
with the traditional ML approach where a longer interval was favored. How-
ever, the 2-second interval demonstrated superior generalization capabilities
in this case. This trend is further supported by MobileNetV3 (Figure 4.7a),
where the 2-second interval not only exhibited better performance on the
test set but also matched the 1-second performance on the validation set.
Based on these findings, the 2-second interval was selected as the optimal

choice for feature extraction in the final models.

Feature Type

Comparing the performance of feature types in the “raw features” approach
(Figure 4.2) with the neural features-based approach (Figure 4.8) reveals
three key insights. First, the neural features-based approach generally en-
hances feature performance, improving both data learning and generaliza-

tion to unseen audio generative algorithms. However, this improvement

75

Mean (F1 + Balanced Accuracy) by Interval and Set Mean (F1 + Balanced Accuracy) by Interval and Set

Val . Test Val = Test

0.81 0.83 0.83

o
©

0.71

0.67

o
o
o
o

Mean Value
Mean Value

I
IS
I
IS

0.2 0.2

0.0 0.0

Interval Interval

(a) (b)

Figure 4.7: Extraction Interval Impact with Varying Num. Samples Across
Intervals. Features Extracted Using: a) VGG16 with batch normalization,
b) MobileNetV3.

does not extend to MFCC features. This limitation may stem from the dis-
tribution of information within the MFCC image representation. As shown
in the top left image of Figure 4.9, potentially valuable information is con-
centrated in a small section at the top of the image, which the model might
not always capture effectively. To address this, introducing a 3D-Mapping
CNN, as detailed in Section 3.4.2, could provide the model with greater
flexibility in learning a more effective data representation. Despite this,
MFCC remains the best feature type for data learning.

The third point is that CQT features exhibit promising generalization
capabilities, suggesting that a combination of MFCC and CQT features
might offer the optimal balance between high data learning performance
and strong generalization. The raw Mel Spectrogram was excluded from
this comparison due to its inferior generalization compared to CQT and

weaker data learning relative to MFCC, as seen in Figure 4.10.

76

Mean (F1 + Balanced Accuracy) by Feature and Evaluation Set
0.87 8:82 val mEm test

0.8

o
o

1
IS

Mean Value

0.2

0.0

Features

(a)

Mean (F1 + Balanced Accuracy) by Feature and Evaluation Set

val B test
10 0.95

0.91

0.83

0.8

o
o

Mean Value

1
IS

0.2

0.0

Features

(b)

Figure 4.8: Feature Type Performance with Varying Num. Samples Across
Intervals. Features Extracted Using: a) VGG16 with batch normalization,
b) MobileNetV3.

Hop and Window Length

To manage the computational demands of deep learning models, the impact
of hop and window lengths was evaluated exclusively using MobileNetV3,
which is less complex than other models. Instead of testing numerous com-
binations, the following were selected based on the findings of Kiigiikbay
et al. [41]: (512, 256), (1024, 512), (2048, 512), and (4096, 1024). Their
research demonstrated that a hop length of 50% of the window length gen-
erally yields good results, with a 25% hop length becoming more effective

7

MFCC - Before

CQT - Before CQT - After

Figure 4.9: MFCC and CQT Features Before and After Preprocessing.

as the window length increases. It is important to note that CQT automat-
ically adapt the window length to the frequency as illustrated in Section
2.3, therefore only the hop length was fixed.

Figure 4.10 shows that shorter window lengths tend to produce better
results on both the validation and test sets, particularly for MFCC and
CQT features. This suggests that higher temporal resolution, achieved with
shorter window lengths, enhances performance by providing more temporal
information. Consequently, final models utilized window and hop lengths
close to (512, 256).

In conclusion, hop and window lengths significantly influence the perfor-
mance of both ML and DL models in audio-related tasks, and their values

should be carefully optimized for each specific application.

78

f f1 on test set svm f1 on test set catboost f1 on test set xgb f1 on test set

~ o~ ~ o~
5 5 059 0.57 0.68 0.53 5 0.77 0.86 0.82 5
3 3 < <
8 ISf 0.79 0.53 0.56 0.56 B 038 0.8 0.77 0.8 8
© © © ©
3 I - 0.53 0.66 0.59)l 078 5 0.82 <
S S S &
© © © ©
2 8 067 0.53 0.49 0.71 Ef 079 0.79 0.84 3
¥ < < ¥
mfcc mel_spec cqt chroma_stft mfcc mel_spec cqt chroma_stft mfcc mel_spec cqt chroma_stft mfcc mel_spec cqt chroma_stft
rf bal_acc on test set svm bal_acc on test set catboost bal_acc on test set xgb bal_acc on test set
o~ ~ ~ o~
5 063 0.69 0.55 5 068 0.68 0.62 5 065 0.69 5 065 0.64
< I < T
8 061 0.71 0.58 8 072 0.65 069 0.62 S 067 0.64 S 068 0.63
£ 047 059 064 £ 06 064 - 063 £ 056 064 065 § 058 064 0.65
S S S &
& o051 064 071 058 S 053 064 066 064 S 053 07 061 8 05 063 06
5 < < ¥
mfcc mel_spec cqt chroma_stft mfcc mel_spec cqt chroma_stft mfcc mel_spec cqt chroma_stft mfcc mel_spec cqt chroma_stft

rf f1 on val set svm f1 on val set catboost f1 on val set xgb f1 on val set

o~ ~ ~ o~
> 0.94 0.95 > 0.89 0.93 0.83 ° 0.93 0.95 0.91 b 0.92 0.95 0.91
< < < <
‘S_ 0.93 0.93 g 0.86 0.9 0.81 § 0.93 0.93 0.91 § 0.92 0.93 0.91
© © © @
e 0.92 0.94 3 0.87 0.91 0.84 S 0.92 0.93 0.91 S 0.92 0.93 0.9
& S S &
© © © ©
3 3 0.83 0.82 3 0.9 W 0.91 3 0.9 0.91 0.91
< < < <
mfcc mel_spec cqt chroma_stft mfcc mel_spec cqt chroma_stft mfcc mel_spec cqt chroma_stft mfcc mel_spec cqt chroma_stft

rf bal_acc on val set svm bal_acc on val set catboost bal_acc on val set xgb bal_acc on val set

o~ o~ o o~
& 057 ¢ g 078 087 NGNS 0.67
& 06 & 8 071 o 068 & 065
© © © ©
s e 0.61 s ! j = 069 | el 069 4 o X ! 0.62
& S S &
© © © ©
g o7 0.59 0.61 0.57 3 0.72 - 0.7 3 0.65 0.71 0.62 3 - 0.63 0.72 0.64
¥ ¥ I S

mfcc mel_spec cqt chroma_stft mfcc mel_spec cqt chroma_stft mfcc mel_spec cqt chroma_stft mfcc mel_spec cqt chroma_stft

Figure 4.10: Impact of Hop and Window Length (Reported on y-axis) on
MobileNetV3 Performance.

Models

In this section, we discuss the outcomes of the deep learning models from
the transfer learning phase through to the final models, focusing on both

learning and generalization capabilities.

Transfer Learning The transfer learning phase aimed to leverage the
pre-trained VGG16 and MobileNetV3 models in two ways: by extracting

features from different layers and by fine-tuning the models.

VGG16 Layer Impact From the analysis depicted in Figure 4.11, it
is evident that layer 43 of the VGG16 model demonstrates the most con-
sistent learning performance across the validation and test sets. However,
as detailed in Figure A.4, the peak generalization performance, achieving
approximately 93% accuracy, was observed in layer 23 when using CQT fea-
tures. Interestingly, the best learning performance was achieved by layer 33.
These peaks in performance might be attributed to specific characteristics
of the dataset or the nature of the features being extracted, which could
favor certain layers over others under particular circumstances.

Given that the primary objective in this phase is to establish a stable
and balanced base model for further refinement (e.g., through 3D-Mapping

79

Mean Balanced Accuracy by Layer and Evaluation Set

0.8 val B test
0.7 0.69
0.65
0.6
Sos
P
< 0.4
2
03
0.2
0.1
0.0
Vv »
layers
Figure 4.11: VGG16 Layers Impact on Performance.
Model Classifier Feature Interval (s) Goal F1 (%) Bal-Acc (%)
Val Test Val Test
SVM MFCC 2 Learning 98 60 96 70
MNETv3 CatBoost CQT 2 Generalizing 96 91 88 90
VGG16 RF MFCC 2 Learning 97 80 83 68
RF CcQT 2 Generalizing 96 91 79 85

Table 4.5: DL Transfer Learning (Feature Extraction) Results

or feature combination), layer 43 was selected as the optimal compromise

between learning efficacy and generalization capability.

Feature Extraction Table 4.5 compares the performance of VGG16
and MobileNetV3 during the feature extraction phase. Although VGG16
was only paired with the Random Forest classifier, and MobileNetV3 was
tested with various classifiers (including SVM, CatBoost, and XGBoost),
MobileNetV3 demonstrated superior performance overall, especially when

paired with CatBoost for generalization tasks.

Fine Tuning As discussed in Section 3.4.1, four different MLP clas-
sifiers were tested for each feature type within MobileNetV3. The best-
performing classifier was selected for each feature: MLP3 for MFCC and
RMS, MLP4 for Mel Spectrogram, and MLP1 for CQT. However, due to the
significantly lower performance of the RMS and Mel Spectrogram features,
they are excluded from the subsequent analysis.

Table 4.6 presents the results of fine-tuning the VGG16 and MobileNetV3

80

Bal Acc (%)
Train Val Test

Model Classifier Feature Epoch Goal

Feature Extractor

SVM MFCC - Learning 98 96 70

MNETv3 CatBoost CQT - Generalizing 100 88 90
Fine Tuning

RF cQT 6 - 99.97 98.11 85.21

VGGIG RF MFCC 7 - 99.68 98.95 §89.41

RF cQT 10 - 99.81 92.90 77.04

MNETv3 RF MFCC 11 - 99.42 97.18 70.63

Table 4.6: DL Transfer Learning (Fine Tuning) Results

models. Notably, when fine-tuned with a Random Forest classifier, the
VGG16 model achieved higher balanced accuracy on the test set compared
to MobileNetV3. This indicates that while MobileNetV3 serves as a strong
baseline, VGG16 may deliver superior results with additional optimization.

Quantitatively, the fine-tuned VGG16 model showed a considerable en-
hancement in performance, particularly when leveraging MFCC features.
This improvement highlighted the rich information contained within the
MFCC features, which VGG16 effectively learned during the fine-tuning
process. On the test set, the Balanced Accuracy (Bal Acc) surged by 21.41%
compared to the feature extraction phase, reaching a remarkable 89.41%.
This outcome, coupled with an impressive 98.95% Bal Acc on the validation
set, underscored the effectiveness of the fine-tuning process in significantly
boosting the model’s overall performance. These results strongly position

VGG16 as a leading candidate for the final model selection.

3-Channels Mapping The full results of the 3D mapping approach can
be found in the Appendix (Table B.1), with a summary of the best results
presented in Table 4.7.

The table highlights the top-performing configurations for each of the
two mapping methods (i.e., CNN and LUT) across two feature types (i.e.,
MFCC and CQT), along with the epochs at which these results were achieved.

When comparing these results with those obtained through transfer
learning (both feature extraction and fine-tuning), the following observa-

tions can be made:

81

Bal Acc (%)

Version Name Mapping Features Epoch

Train Val Test
64-128-3-learnable CNN MFCC 10 974 975 65.2
64x5-3x1-sigmoid CNN cQT 8 94.5 90.7 90.1
10-1.5-linear LUT MFCC 10 98.2 96.9 T72.1
10-3-linear LUT cQT 7 97.8 94.8 92.1

Table 4.7: Best Results of Different 3D Mapper Architectures with VGG16

e Model Flexibility and Training Accuracy: The increased model flexibil-
ity provided by the 3D mapping approach is reflected in the training
accuracy, which is noticeably lower compared to the fine-tuning case.
The reduction in training accuracy suggests that the model has access
to more complex patterns, potentially avoiding overfitting and capturing

more generalizable features.

e MFCC Performance: With the introduction of the mapping, the perfor-
mance of MFCC features showed a significant improvement—4.1% on the
test set and 13.9% on the validation set—compared to using the VGG16
model as a feature extractor (Table 4.5). It’s important to note that dif-
ferent classifiers were used: an MLP in the 3D mapping approach and a
Random Forest during the transfer learning phase. However, compared
to fine-tuning results (Table 4.6), MFCC’s performance with 3D mapping

was less impressive.

o CQT Performance: The results for CQT features reveal a different trend.
The improvement over the feature extraction method was substantial,
but more notably, the generalization capability saw a significant boost.
The test accuracy increased from 85.21% in fine-tuning to 92.1% with 3D

mapping, demonstrating the potential of CQT features in this context.

In summary, the 3D mapping approach enhanced the overall model perfor-
mance, particularly for CQT features, which exhibited exceptional general-
ization capabilities. Conversely, fine-tuning was more beneficial for MFCC
features, significantly boosting performance compared to the feature extrac-
tion phase.

Given these promising results, the next section explores the combination

of these two approaches to further enhance the model’s performance.

82

Combining Fine Tuning and Mapping Table 4.8 presents the results
of integrating fine-tuning with mapping techniques in the VGG16 model.
This section explores the impact of this combination on model performance,
particularly in terms of learning capabilities and generalization.

The results clearly show that adding fine-tuning to the 3D mapping
approach led to significant improvements in the model’s ability to learn.
While this improvement in learning might have been expected, a notable
finding is that generalization also improved in most cases.

Previously, the best-performing model in terms of learning was a fine-
tuned model without any mapping, using CQT features. This model achieved
a balanced accuracy of 98.95% on the validation set (Table 4.6). How-
ever, its performance dropped on the test set, with a balanced accuracy
of 89.41%. On the other hand, the best model for generalization was one
using 3D mapping with CQT features, which reached a balanced accuracy
of 92.1% on the test set, while its validation performance was slightly lower
at 94.8% (Table 4.7). These results highlighted a trade-off between learning
and generalization, depending on the model used.

However, when fine-tuning was combined with mapping, the model’s
performance improved significantly on both the validation and test sets.
The best model, using CQT features, surpassed the previous best CQT-
based model by 4.1% on the test set, achieving a balanced accuracy of
96.2%. Similarly, the validation set performance increased by 3.2%, reach-
ing a balanced accuracy of 98.0%. This improvement was also observed
with MFCC features, where the combined approach resulted in a balanced
accuracy of 91.9% on the test set and 98.0% on the validation set.

This indicates that combining fine-tuning with mapping is an effective
strategy for enhancing the model’s performance, not only in learning but

also in generalizing to new unseen audio deepfake generation algorithm.

Impact of Parameter Reduction Methods The combination of fine-
tuning and mapping significantly enhanced the model’s performance, partic-
ularly in terms of generalization, as demonstrated in the previous analysis.
The two top-performing models from this approach, highlighted in blue in
Table 4.8, were selected to assess the impact of parameter reduction meth-
ods on model performance.

Table 4.9 presents the results of this analysis, comparing the perfor-

mance of the two best models models (originally using flattening) with

83

Model Name Fine Mapping Features Epoch Bal Acc (%)
Tuning Train Val Test
3-1-sigmoid No CNN MFCC 6 96.8 92.6 76.1
3-1-sigmoid Yes CNN MFCC 4 98.3 99.9 70.2
64x5-3x1-sigmoid No CNN cQT 8 94.5 90.7 90.1
64x5-3x1-sigmoid Yes CNN cQT 6 98.3 98.0 96.2
10-1.5-linear No LUT MFCC 10 98.2 96.9 7T2.1
10-1.5-linear Yes LUT MFCC 8 99.7 98.0 91.9
10-3-linear No LuT cQT 7 97.8 94.8 92.1
10-3-linear Yes LUT cQT 14 99.4 98.1 90.0

Table 4.8: Results of Combining Fine Tuning and Mapping with Different
Architectures (VGG16)

alternative parameter reduction methods: global average pooling and
column-wise average pooling. Surprisingly, despite the significant re-
duction in parameters achieved through these methods, the models’ per-
formance remained relatively stable. In some instances, performance even
improved. For example, the model using CQT features with global average
pooling achieved a balanced accuracy of 97.3% on the test set, represent-
ing a 1.1% improvement over the flattening-based model. Another notable
improvement was observed in the model using MFCC features with column-
wise average pooling, which reached a balanced accuracy of 99.0% on the
validation set, surpassing the flattening-based model by 1.0%.

[t’s important to note that in the flattening-based method, the first fully
connected layer was not trained to reduce complexity. This suggests that
further performance gains could potentially be achieved by training this
layer.

Among the parameter reduction methods, global average pooling proved
to be more effective in reducing the number of parameters while maintain-
ing performance. It performed comparably to column average pooling on
MFCC features and outperformed it on CQT features. Consequently, only
the global average pooling method was selected for the subsequent section,
where both feature types were combined using an ensemble approach.

This analysis indicates that strategic parameter reduction methods, par-
ticularly global average pooling, can maintain or even enhance model perfor-
mance while significantly reducing complexity, which is crucial for deploying

efficient models in real-world applications.

84

Model Name Fine peatures Epoch Version Bal Acc (%)
Tuning Train Val Test
64x5-3x1-sigmoid Yes cQT 6 Flattening 98.3 98.0 96.2
64x5-3x1-sigmoid Yes cQT 8 Global 98.5 97.5 97.3
64x5-3x1-sigmoid Yes CcQT 8 Column 97.9 98.5 94.0
10-1.5-linear Yes MFCC 8 Flattening 99.7 98.0 91.9
10-1.5-linear Yes MFCC 14 Global 99.8 98.8 90.2
10-1.5-linear Yes MFCC 8 Column 99.8 99.0 90.2

Table 4.9: Results of Fine Tuning and Mapping with Different Parameters
Reduction Methods (VGG16)

Combining Features The results of the feature combination approach
are presented in Table 4.10. This analysis investigates the impact of com-
bining CQT and MFCC features on the model’s performance and compares
the performance of pre-trained classifiers with those trained specifically on
the combined feature set.

Overall, the results demonstrate that combining features can lead to sub-
stantial improvements in model performance, also when utilizing pre-trained
classifiers. The highest balanced accuracy on the test set was achieved
by the model using the Trained-classifier-weights with flattening, reaching
98.70%. This performance is slightly superior to the CQT-classifier-weights
with flattening, which achieved a test set accuracy of 98.68%. Both of
these models also performed exceptionally well on the validation set, with
balanced accuracies of 100% and 99.76%, respectively.

Interestingly, while the Global Average Pooling method performed well
with individual features, it did not perform as effectively with the combined
features. Specifically, the Trained-classifier-weights model using Global Av-
erage Pooling saw a drop in performance, achieving only 94.08% on the test
set, compared to 98.70% with flattening. This suggests that, while pooling
methods can reduce complexity and maintain performance with individual
features, they may not be as effective when features are combined, possibly
due to a loss of feature-specific information during the pooling process.

Another noteworthy observation is the MFCC-classifier-weights perfor-
mance with Global Average Pooling, which achieved a test accuracy of
98.51%. This indicates that the pre-trained MFCC classifier can effectively
generalize to the combined feature set, particularly when utilizing pooling
techniques. However, despite this strong performance, it still falls short of

the top-performing Trained-classifier-weights model with flattening, high-

85

Bal Acc (%)
Train Val Test

Model Name Version Epoch

CQT-classifier-weights Flattening 6 99.30 99.76 98.68
CQT-classifier-weights Global Avg Pooling 4 99.06 99.29 98.34
MFCC-classifier-weights ~ Flattening 8 99.74 99.84 97.20
MFCC-classifier-weights ~ Global Avg Pooling 6 99.15 99.29 98.51
Trained-classifier-weights Flattening 10 99.42 99.73 98.70
Trained-classifier-weights ~ Global Avg Pooling 8 99.19 99.03 94.08

Table 4.10: Results of Multi-Feature Approach (Evaluated on a Subset of
the Full Evaluation Data)

lighting the benefit of training the classifier directly on the combined fea-
tures.

In conclusion, the combination of features, can enhance model perfor-
mance, with the best results observed using the Trained-classifier-weights
model with flattening. This latter was the unique model whose test learning
curve showed a clear learning trend, meaning the model is actually learning
how to generalize. The other models showed a wiggly test learning curve,
meaning the generalization is aleatory. Pooling methods may not always
preserve the full benefit of combining feature sets, as seen in the slight
performance drop with Global Average Pooling in the combined feature
context. However, considering the other two models, the pooling methods
results were impressive, particularly with the MFCC features where the
Global Average Pooling method achieved a test accuracy of 98.51%, sur-
passing the flattened model by 1.31% and placing itself only 0.19% below

the top-performing model.

Final Model Based on the previous sections, the best model identi-
fied was the one using trained classifier weights with a flattening layer.
Consequently, as explained in Section 3.4.5, the model was proposed in
three variants: DeepSpectraNet, DeepSpectraNetLite, and DeepSpectraNet-
Flex, trained and evaluated on the full dataset. A fourth model, Deep-
SpectraNet E2E, distinguished itself by taking as input the raw audio data,
but its performance is tackled in the next section. The results, as shown
in Table 4.11, indicate that training on the full dataset did not drastically
surpass the results obtained on smaller subsets, suggesting that the model

is efficient at learning from a relatively small amount of data (less than 6%

86

Acc F1 Bal Acc PR AUC ROC AUC EER

Classifier

Val Test Val Test Val Test Val Test Val Test Val Test

Existing Models

TCN [24] 98.00 92.00
STN [24] 89.00 80.00
CNN Scatter [42] - 88.98 - - - - - - - - -
DeepSonar [27] 99.98 - 99.98 - - - - - 99.98 - 0.02
VGGI6 [32] 97.64 89.25 - - -
VGGI19 [32] 97.58 90.72
MobileNet [32] 96.89 92.00 -
CNN-BIiLSTM [43] 97.82 - - - - - - - - - 0.03 -
MFAAN [44] - 94.47 - - - - - - - - - 0.79
VGG16 [45] 94.00 93.00 -

Proposed Models

DeepSpectraNet 99.77 98.27 99.87 98.85 99.81 98.37 100 99.96 99.87 99.88 0.19 1.59
DeepSpectraNetLite 99.43 97.40 99.67 98.27 99.27 97.62 99.98 99.93 99.92 99.78 0.59 2.38
DeepSpectraNetFlex 99.89 97.58 99.94 98.41 9991 96.16 100 99.82 99.99 99.55 0.07 3.23
DeepSpectraNetE2E 98.43 9443 98.98 96.26 98.69 94.20 99.92 99.44 99.81 98.27 143 5.82

Table 4.11: Final DL model Metrics Compared with Baseline Models and
SOTA DL models (All the Values Are in %. Evaluation Done on The Full
Dataset)

of the full dataset).

Fully E2E Version The key challenge for the DeepSpectraNet E2E model
was achieving strong generalization. While it easily reached high accuracy
on the validation set, test performance was notably weaker, often falling
below 70%. This gap was due to the model’s extreme flexibility, which
allowed it to fit the training data very well (with 99.99% balanced accuracy
on validation) but hampered its ability to generalize.

Several architectures were explored, including fully DNN approaches
with 1D convolutions, but test results remained suboptimal. The intro-
duction of the Channel and Spatial Attention Module (CSAM) improved
the model’s learning process by directing attention to relevant features, en-
hancing generalization. The final DeepSpectraNetE2FE achieved a balanced
accuracy of 98.69% on validation and 94.20% on the test set, with an EER
of 1.43%.

Analysis of Results The DeepSpectraNetFlex model, demonstrated
its higher flexibility with high results on the validation set, however this
this came at the expense of generalization, as reflected by a lower test set
balanced accuracy of 96.16%. A possible solution consists in removing some
training data, following a dropout inspired strategy, to prevent overfitting.

With this approach, the model reached a balanced accuracy of 97.92% on the

87

test set and 99.84% on the validation set at batch 540 (with a total of 17,280
samples). DeepSpectraNet, on the other hand, displayed a strong generaliza-
tion ability, achieving a balanced accuracy of 98.37% on the test set, while
maintaining robust performance on the validation set (99.81%). DeepSpec-
traNetLite, though designed for reduced complexity, still performed well,
albeit slightly behind DeepSpectraNet, achieving a balanced accuracy of
97.62% on the test set. DeepSpectraNetE2FE is the worst performer, how-
ever considering the absence of the hand crafting process, the results are

promising.

Comparison with State-of-the-Art Models The proposed models,
particularly DeepSpectraNet and DeepSpectraNetFlex, demonstrate strong
performance when compared to state-of-the-art models in the literature,
though it’s essential to carefully consider the differences in evaluation method-
ologies across studies. In this project the reference metric is the balanced
accuracy for the reasons explained in Section 4.2.3. However in case of bal-
anced data, as in all the other studies, it is equivalent to the accuracy and
the comparison can be made directly.

TCN and STN, as reported by Khochare et al., were evaluated sepa-
rately on validation and test sets. TCN achieved a balanced accuracy of
98% on the validation set and 92% on the test set. Similarly, STN recorded
89% on the validation set and 80% on the test set. When compared to
these results, DeepSpectraNet outperformed TCN and STN both on the
validation and test sets, by 1.81% and 6.37%, respectively.

DeepSonar presents another point of comparison, but their evaluation
strategies introduce complications. These models have merged all the sets
in a single one, thus the training set contains the unseen TTS algorithm
from the test set. As a consequence the models were only tested for their
learning capabilities, thus the results can only be compared to the validation
set of the proposed models. DeepSonar, for instance, reports a validation
accuracy of 99.98% while DeepSpectraNetFlex, when evaluated under similar
conditions (validation set), achieved a balanced accuracy of 99.91%, only
0.07% below DeepSonar. Unfortunately a comparison with the test set is
not possible. DeepSonar surpasses DeepSpectraNetFlex in the EER metric,
with 0.02% against 0.07%, both can be considered excellent results.

VGG16 and VGG19, proposed by Reimao and Tzerpos, were evaluated
separately on the validation and test sets. VGG16 achieved a balanced

88

accuracy of 97.64% on the validation set and 89.25% on the test set, while
VGG19 reached 97.58% on validation and 90.72% on test. DeepSpectraNet
surpasses both in terms of generalization, with a test balanced accuracy of
98.37%, and outperforms them in learning with a validation balanced accu-
racy of 99.81%. These results are noteworthy, as VGG16 is an important
piece of the proposed model and this demonstrates the effectiveness of the
mapping and features combination strategies.

MobileNet, another model evaluated by Reimao and Tzerpos, achieved
a balanced accuracy of 96.89% on the validation set and 92.00% on the test
set. DeepSpectraNet exceeds these metrics on both validation and test sets,
further solidifying its status as a more effective model for both learning and
generalization.

Finally, CNN-BiLSTM reports a balanced accuracy of 97.82% but adopt
the same methodology as DeepSonar. Following the same reasoning we can
only compare the validation set results, where DeepSpectralNet outperforms
CNN-BiLSTM by 1.99%.

In summary, DeepSpectraNet and its variants, with a mention to Deep-
SpectraNetFlex for the learning capabilities and to DeepSpectraNetLite for
the optimal complexity-performance trade-off, demonstrate competitive or
superior performance compared to state-of-the-art models. The rigorous
evaluation on separate validation and test sets, combined with the model’s
ability to maintain high performance under different conditions, highlights

the robustness and efficacy of the proposed approach.

Performance at Different FPR Levels To provide further insights
into the model’s robustness, the ROC curve of DeepSpectraNet was magni-
fied to evaluate the true positive rate (TPR) at different false positive rate
(FPR) levels. Figure 4.12 demonstrates that the model maintains a high
true positive rate (TPR) across various FPR thresholds, with a slight drop
at the lowest FPR level (0.001) more pronounced in the test set.

Complexity Analysis Table 4.12 provides a detailed overview of the
computational complexity associated with training the final models. The
total pure training time is split into two parts: the base submodels (focused
separately on CQT and MFCC features) and the end-to-end (E2E) phase.
It is important to note that the training times reported here exclude any

overhead, such as data loading or preprocessing, which can vary depending

89

TPR at Different FPR Levels for DeepSpectraNet

e *

—o— Test TPR
—&— Validation TPR

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
FPR

FPR Test TPR (%) Validation TPR (%)
0.2 99.9 100.0
0.1 99.8 100.0
0.05 99.7 99.9
0.01 96.5 99.9
0.001 89.7 99.5

Figure 4.12: ROC Curve Detail of DeepSpectraNet at Different FPR Levels

on the computational environment. For context, the models were trained
using the Lightning.ai platform ? on a 1 GPU L4 hardware setup.

In terms of training times, DeepSpectraNet required 7,130 seconds for
the base submodels and an additional 3,449 seconds for the E2E phase,
with the best performance achieved at the 10th epoch. The model includes
a total of 140,607,593 parameters, of which 8,394,754 were trained during
the E2E phase. Despite the substantial number of parameters, the model’s
training time reflects a balanced trade-off between complexity and perfor-
mance, demonstrating the efficiency of its architecture.

DeepSpectraNetLite was designed with a primary focus on reducing the
model’s memory usage and producing a lightweight, yet high-performing
architecture. While its training time might not seem drastically reduced
compared to other models, due to the unchanged VGG16 core, which is
inherently computationally demanding, the true advantage lies in the sig-
nificant reduction in the number of parameters. The model reduced the
total number of parameter by almost 80% compared to DeepSpectraNet, yet
providing high performance.

DeepSpectraNetFlex required 7,130 seconds for base training and 1,002
seconds for the E2E phase. Although it involved the highest number of
trainable parameters during E2E training (32,005,097), the model achieved

its best performance after just one epoch. This rapid convergence sug-

Shttps://lightning.ai

90

https://lightning.ai

Training Time (s) Number of Parameters

Model Best Epoch

Base E2E Total E2E Trained
DeepSpectraNet 10 7130 3449 140607 593 8394 754
DeepSpectraNetLite 2 10780 674 29711977 1026
DeepSpectraNetFlex 1 7130 1002 140607593 32005097
DeepSpectraNetE2E 4 8132 2956 140800055 32197559

Table 4.12: Final Models Training Time and Number of Parameters

gests that while DeepSpectraNetFlex is highly flexible and capable of fast
learning, it is also prone to overfitting, as evidenced by its relatively lower
performance on the test set compared to its validation results.
DeepSpectraNetE2FE relies on DeepSpectraNetFler as a base model thus
the base training time is 8,132 seconds. The E2E phase required 2,956
seconds, with the best performance achieved at the 4th epoch. Its total time
is comparable to the other models, despite its higher complexity. However
it is important to note that the number of training samples was slightly
smaller than the other models, due to the way the audio is preprocessed.
In summary, the DeepSpectraNetLite model presents an attractive option
for scenarios where computational resources are limited, offering competitive
performance with significantly reduced parameter count. Meanwhile, Deep-
SpectraNet and DeepSpectraNetFlexr provide robust alternatives for more
resource-intensive applications, with the latter offering rapid convergence at
the potential cost of overfitting. DeepSpectraNetE2FE is a promising model,
as it doesn’t require any hand-crafted feature extraction, but its general-
ization capabilities need further improvements. The choice of model should
thus be aligned with the specific goals and constraints of the application,
balancing the need for computational efficiency and ease against the desired

level of model performance.

4.3.3 Overall Comparison

In this section there is a brief comparison between the traditional machine
learning and deep learning approaches.

Features Engineering

In both approaches, a 2-second extraction interval was identified as the opti-
mal choice, delivering the best performance on validation data and superior

generalization on test data, with the exception of the VGG16 model, where

91

a 1-second interval slightly outperformed. Regarding feature type selection,
MFCC consistently emerged as the most effective for data learning in both
approaches. However, the neural representation of CQT features demon-
strated remarkable learning and generalization capabilities. Overall, the
neural features-based approach improved feature performance.

Concerning window length, traditional ML approaches did not reveal
a definitive optimal value, as it varied depending on the model and fea-
ture type. In contrast, the deep learning approach favored shorter window
lengths, particularly for MFCC and CQT features. The impact of hop
length was assessed only in the ML approach and the difference between a

quarter and a half of the window length was found to be negligible.

Models

The comparison between the traditional Machine Learning (ML) approach
and the Deep Learning (DL) models in Table 4.13 clearly shows the superior
performance of the DL models.

The ML-based RF-RFE model delivered a solid test set balanced accu-
racy of 93.39%, with a slightly higher 95.64% on the validation set. These
results are strong, particularly for a model that is generally less complex and
more interpretable than deep learning models. However, the DL models,
especially DeepSpectraNet, significantly outperformed the RF-RFE model
across all metrics. DeepSpectraNet achieved a balanced accuracy of 98.37%
on the test set and 99.81% on the validation set. Its exceptional perfor-
mance is also reflected in its nearly perfect ROC AUC of 99.87% on the
test set. DeepSpectralNetLite offered a good balance between performance
and efficiency. Despite a reduction in parameters, it still achieved a test
set balanced accuracy of 97.62%, slightly lower than DeepSpectraNet, but
with the added benefit of reduced model complexity. DeepSpectraNetFlex,
while highly adaptable, showed a tendency towards overfitting, achieving
a high balanced accuracy on the validation set (99.91%) but a lower score
on the test set (96.16%). DeepSpectraNetE2E demonstrated the potential
of an end-to-end approach, as it offers both a good performance and the
possibility to avoid the hand-crafted feature extraction process, which is a
time-consuming and case specific task.

In summary, DL models, particularly DeepSpectraNet, demonstrated
clear advantages over traditional ML approaches, excelling in both learning

and generalization.

92

Acc F1 Bal Acc PR AUC ROC AUC EER

Classifier
Val Test Val Test Val Test Val Test Val Test Val Test
Machine Learning
RF-RFE 98.49 91.65 99.13 94.23 95.64 93.39 99.92 99.35 99.59 97.94 2.65 7.20
Deep Learning
DeepSpectraNet 99.77 9827 99.87 98.85 99.81 98.37 100 99.96 99.87 99.88 0.19 1.59

DeepSpectraNetLite 99.43 97.40 99.67 98.27 99.27 97.62 99.98 99.93 99.92 99.78 0.59 2.38
DeepSpectraNetFlex 99.89 97.58 99.94 98.41 99.91 96.16 100 99.82 99.99 99.55 0.07 3.23
DeepSpectraNetE2E 98.43 94.43 98.98 96.26 98.69 94.20 99.92 99.44 99.81 98.27 143 5.82

Table 4.13: Comparison of The Proposed Models Based on Traditional ML
and DL Approaches (All The Values Are in %. Evaluation Done on The
Full Dataset)

4.4 Explainability

In this section, the explainability of the final models is analyzed to pro-
vide insights into their decision-making processes. For the traditional ML
approach, the Random Forest (RF) model is examined, focusing on fea-
ture importance and feature behavior. For the deep learning approach,
the four models, DeepSpectraNet, DeepSpectraNetLite, DeepSpectraNetFlex,
and DeepSpectraNetE2FE, are analyzed through confusion matrices, Mapper
analysis, with the addition of Grad-CAM for the former three models.

4.4.1 Traditional Machine Learning

The analysis of the final Random Forest (RF) model’s behavior and decision-
making process is critical for understanding how the model distinguishes
between real and fake data. The explainability analysis, focusing on fea-
ture importance and feature behavior, provides insights into the model’s

reasoning.

Most Important Features

The feature importance analysis (Figure 4.13) reveals that the model pri-
marily relies on MFCC (Mel-Frequency Cepstral Coefficients) features, which
account for 61% of the overall importance. This dominance of MFCC fea-
tures confirms their suitability to audio classification tasks, as demonstrated
by other studies [46, 45]. RMS (Root Mean Square) features contribute 21%,
while CQT (Constant-Q Transform) features contribute 18%. This distri-

bution indicates that while MFCC is the most critical, the model also con-

93

Feature importances

Type total importances

mmm

g 5 £ £

Figure 4.13: Final RF model feature importance according to RFE

siders a combination of amplitude-related and frequency-related features to
make predictions. This multi-faceted approach likely enhances the model’s
robustness, especially when handling complex audio patterns.

In Figure 4.14, are presented the mean and variance across the data of
the most important features for each class. To ensure a fair comparison, the
features were normalized using the Max-Abs method, using the same max
value for both classes. The plot shows clear differences in the mean values
of these features between the real and fake classes. For instance, certain
MFCC coefficients show distinct mean value separations between classes,
which likely helps the model in making accurate predictions. The RMS
features, which are related to the energy of the signal, also show variability,
contributing to the model’s ability to detect subtle differences in the audio
data. These findings show that the model’s decision-making is not based on
a single dominant feature but rather a combination of features that together
capture the complex characteristics of the data.

For sake of completeness, Figure 4.15, shows the top 3 MFCC values
over time compared to the waveform and mel spectrogram.

The RF model’s explainability analysis demonstrates that the model
leverages a combination of MFCC, RMS, and CQT features to distinguish
between real and fake audio data. The fact that the 18 out of 20 MFCCs
were retained through RFE, further supports the importance of these fea-

tures in the model’s decision-making process.

94

Most important features mean values for each class

Real
Fake

Max Abs Normalized Mean Value

\\\\\\\\\\\\\

Figure 4.14: Final RF Model Most Important Features Mean and Variance

4.4.2 Deep Learning

This section examines the decision-making process and explainability of the
best DL models. We begin by analyzing the confusion matrix to evaluate
how well the model distinguishes between real and fake data. Next, we re-
view the model’s most significant errors to identify areas for improvement.
The Mapper analysis will then provide insight into the learned feature space
through the 3DMapper. Finally, the Grad-CAM analysis will visually high-
light the key areas of the input data that influence the model’s predictions,
offering a clear view of its focus during decision-making.

In the following sections the main focus is on the results of the Deep-
SpectraNet model, with a brief comparison with the other two models. All

the images and charts for these latter are made available in the Appendix.

Curves and Confusion Matrices

The objective of this section is to evaluate the performance of the Deep-
SpectraNet model using ROC and PR curves, which measure the model’s
ability to distinguish between real and fake audio data. Additionally, con-
fusion matrices are analyzed to give a more detailed look into classification
accuracy and errors.

Both the ROC and PR curves for DeepSpectraNet (Figure 4.16) indicate
near-perfect performance on the validation set and only a slight degradation
on the test set, where the PR AUC reached 99.96% and the ROC AUC
99.87%. These scores clearly demonstrate that the model is highly effective

95

Mel Spectrogram - test_fake

0 05 1 15 2

ime
Waveform with MFCC Attributions - test_fake

~—— MFCC 8 Attribution
0.2 MFCC 12 Attribution
MFCC 17 Attribution

0 5000 10000 15000 20000 25000 30000

Waveform - test_fake

0 5000 10000 15000 20000 25000 30000

Figure 4.15: Final RF Model MFCC Behavior on Waveform and Spectro-
gram

in discriminating between the two classes, with strong generalization across
both the validation and test datasets. A more granular view of the ROC
curve at different false positive rates (FPR) is presented in Figure 4.12.

The confusion matrix (Figure 4.17) complements these metrics by of-
fering a closer look at classification performance. On the validation set,
DeepSpectraNet shows similar accuracy between both classes, though the
fake class has a slightly lower rate of false negatives (0.13%) compared to
the real class (0.24%). The test set results align with this trend, albeit with
slightly higher error rates: the fake class has 1.42% false positives, while the
percentage of false negatives is 1.82%.

Similar patterns are evident in the confusion matrices of the DeepSpec-
traNetLite (Figure C.2), DeepSpectraNetFlez (Figure C.4) and DeepSpec-
traNetE2E (Figure C.6) models. The only significant deviation occurs in
DeepSpectraNetFlex, which exhibits a higher proportion of false positives on
the test set.

In conclusion the ROC and PR curves demonstrate that DeepSpectraNet
performs remarkably well, especially on the validation set. Confusion ma-

trices reveal that although the model slightly struggles more with real data

96

True Positive Rate

True Positive Rate

Receiver Operating Characteristic - test set

1.01

0.81

o
o
s

o
>
R

0.2

0.0

ROC curve (area = 1.00)

Precision

T

T T
0.4 0.6 0.8

False Positive Rate

Receiver Operating Characteristic - val set

1.0

(a)

1.01

0.8

0.6

0.4 1

0.21

ROC curve (area = 1.00)

Precision

0.0 +5

T

T T
0.4 0.6 0.8

False Positive Rate

1.0

(b)

Precision-Recall Curve - test set

1.00 A

0.95 4

0.90 1

0.85

0.80

0.751

= PR curve (area = 1.00)

~

T T T T T

0.0 0.2 0.4 0.6 0.8
Recall

Precision-Recall Curve - val set

1.0

1.00 A

0.98 1

0.96 1

o

©

s
s

0.92 4

0.90 1

0.88 1

=—— PR curve (area = 1.00)

T T T T T

0.0 0.2 0.4 0.6 0.8
Recall

1.0

Figure 4.16: ROC and PR curves of DeepSpectraNet on: a) Test Set, b)
Validation Set.

on the test set, it maintains a strong ability to classify both real and fake

audio data accurately.

Worst Errors

Understanding the model’s behavior further requires analyzing its worst

errors (samples that the model misclassified with the highest confidence).

The worst errors of the DeepSpectraNet model (Figure 4.18) revealed that

the top 15 errors on the validation set were all false negative, and the same

on the test set with 13 out of 15. This suggests that the model struggles

more with recognizing real audio data, sometimes confidently misclassifying

it as fake. This behavior highlights the subtle distinctions between real and

fake audio data.

97

Validation Set Test Set

0.8 0.8

0.6 0.6
[[
2 2
= =

-0.4 -0.4

9785
86.55% 0.2 0.2
Predicted Predicted

Figure 4.17: Confusion Matrix of DeepSpectraNet

Worst Errors

Validation Set Test Set
1.0
0.8 .
< 0.6 .
<]
Q
0.4 .
0.2 True Class . True Class
' - 1 mE 0 W 1
0'0'\ © O A A Ao I S Y '
N ~ >
GRS g SR A (Y
AR SN IO R o o SN
(\\0 (\\Q/ Q ‘.\\\0 ‘.\\\0 '\\\0 Q7 QT Q (\\Q/ (\\0 (\\Q/ Q ‘.\\\0 Q)
filename_short filename_short

Figure 4.18: Worst Errors of DeepSpectraNet

Interestingly, a different trend is observed in the worst errors of the Deep-
SpectraNetLite (Figure C.7) and DeepSpectraNetFlex (Figure C.8) models.
Specifically, in DeepSpectraNetFlex, 12 out of the 15 worst errors on the test
set were false positives, indicating a stronger tendency to misclassify fake
audio data as real.

This behavior variability should be considered when selecting the appro-
priate model for specific applications. For example, in content moderation
tasks where preventing the spread of Al-generated, potentially harmful con-
tent is critical, a model like DeepSpectraNet that is less prone to misclassify
fake data as real would be a more suitable choice.

In summary DeepSpectraNet tends to misclassify real data as fake with
high confidence, especially on the validation set, while DeepSpectraNetFlex
shows a higher rate of false positives, particularly on the test set. Deep-
SpectraNetE2E confirms the DeepSpectraNet behavior. This difference in
behavior can guide model selection based on the specific needs of the task

at hand, such as content moderation.

98

Mapper Analysis

This section examines how the Mapper enhances different areas of the in-

put data, providing insights into the model’s feature extraction process,
independently for CQT and MFCC images.

CQT 3DMapper - Fake Val file5444 CQT 3DMapper - Fake Test file350

Input Output Input

(a). CQT Features Val Set (b). CQT Features Test Set

MFCC 3DMapper - Fake Val file5444 MFCC 3DMapper - Fake Test file350

Input Input

(¢c). MFCC Features Val Set (d). MFCC Features Test Set

Figure 4.19: DeepSpectraNet Mapper Output for a Random Fake Audio
Sample on Different Evaluation Sets. (Mapper Input on the left, Mapper
Learned Output on the right).

CQT Image: Figure 4.19a shows the Mapper output for a randomly se-
lected fake audio sample from the validation set using the Constant-(Q Trans-
form (CQT). Since the test set produced similar results (Figure 4.19b), we
focus on the validation set for the analysis.

In the output, the input’s visible wave-like elements are enhanced, with
each color channel emphasizing different parts of the input. The red chan-
nel is concentrated on the upper portions of the white wave-like structures,
the green channel highlights the lower parts, and the blue channel empha-
sizes vertical structures. Remarkably, the model reveals new structures both
above and below the visible area that were not present in the original im-
age. This suggests the model is capable of extracting and enhancing hidden
features, leading to more informed decisions.

Interestingly, the behavior of other models differs. The DeepSpectraNet-

Flex model (Figure C.14) presents a more detailed learned image, indicating

99

its greater flexibility. In contrast, the DeepSpectraNetLite model (Figure
C.10) displays a different color channel distribution. In this case, the red
channel dominates and captures vertical structures, the green channel cov-
ers the entire wave-like elements, while the blue channel is concentrated in

the middle of those elements, surrounded by the green channel.

MFCC Image: For the Mel-Frequency Cepstral Coefficient (MFCC) im-
ages, the learned features are less detailed due to the lower flexibility of the
Lookup Table (LUT) mapping method, as opposed to the CNN-based mod-
els. However, the Mapper output still enhances the input image, revealing
new details not initially visible (Figures 4.19¢ and 4.19d).

When comparing the MFCC-based results across other models (Figures
in Appendix: C.12, C.16, C.17, and C.13), no significant differences were
observed, indicating a consistent behavior among the models for this feature
type.

In summary, the results showed the efficacy of the Mapper in enhancing
the input data, feeding the model with more detailed and informative rep-
resentations. The CNN based Mapper used for the CQT images was able to
extract more detailed features, while the LUT based Mapper used for the
MFCC images was less flexible but still able to enhance the input data.

Fully E2E Features

Unlike previous models, the fully end-to-end model doesn’t rely on pre-
extracted features such as CQT or MFCC. Instead, it utilizes raw audio
data to compute a time-frequency representation through its Signal Prepro-
cessing Block, which is further enhanced by the Convolutional Block.

This section explores how the model processes and transforms these
features. Figures 4.20 and 4.21 depict the learned features at three key
stages: the initial spectrogram (input), the output of the Convolutional
Block (enhanced features), and the final representation after the 3D Mapper
(mapped features).

The most significant transformation occurs in the Convolutional Block,
where high-frequency content is enhanced, revealing new details not present
in the original spectrogram. The Mapper then refines these features, with
each RGB channel focusing on distinct areas, further sharpening the repre-
sentation for better classification performance.

In summary, the analysis suggest the high frequencies are crucial for the

100

model’s decision-making process, as it tends to focus on these areas during

feature learning.

Grad-CAM

Grad-CAM (Gradient-weighted Class Activation Mapping) is a visualiza-
tion technique that highlights the most important areas in the input data
influencing the model’s predictions. The goal of this analysis is to un-
derstand how feature combinations affect the decision-making process and
whether the “fakeness” of an audio sample is contained in smaller, more
subtle details.

For a correct understanding of the results, it is important to note that
the features images have a reverted y axis, with the lowest values at the
top and the highest at the bottom. For example, in the CQT images, the

lowest frequencies are at the top and the highest at the bottom.

What is the Effect of Feature Combination? To investigate the effect
of feature combination, two Grad-CAM analyses were conducted: one by
separating the model into the two submodels (one for CQT and one for
MFCC), and another by using the combined model with combined features.
Comparing the Grad-CAM outputs from these approaches reveals which
features are crucial for the model’s decision-making process and provides
insight into whether the features are redundant or complementary.

The analysis was performed on a highly confident true fake sample.
In the validation set (Figure 4.22), notable differences emerged between
the separated and combined Grad-CAM outputs. The combined model
exhibited a broader focus, expanding its attention to higher frequencies and
time frames in the CQT map, while also concentrating on lower MFCC
coefficients. This demonstrates that the model relies on both broad audio
characteristics (captured by lower MFCCs) and finer details. The fact that
both activation maps changed with the combined model suggests that the
features are complementary and jointly contribute to the decision-making
process.

In the test set (Figure 4.23), the model showed a stronger reliance on
CQT features as their activation map remained similar across combined
and separated approaches, with changes in the MFCC activation map. This
indicates that CQT features play a dominant role in the test set predictions.

However, MFCC features still provide valuable supplementary information,

101

Branch 1 Spectrogram Branch 2 Spectrogram

Branch 1 Enhanced Features Branch 2 Enhanced Features

Branch 1 After Mapping Branch 2 After Mapping

Figure 4.20: DeepSpectraNetE2E Learned Features for Random Fake Audio
Sample (Validation Set)

102

Branch 2 Spectrogram

Branch 1 Spectrogram

Branch 1 Enhanced Features Branch 2 Enhanced Features

A i P

Branch 1 After Mapping Branch 2 After Mapping

Figure 4.21: DeepSpectraNetE2E Learned Features for Random Fake Audio
Sample (Test Set)

103

CQT val Input CQT val GradCAM Combined CQT val GradCAM Separated

MFCC val Input _MFCC val GradCAM Combmed _MFCC val GradCAM Separated

=]

--

Figure 4.22: Grad-CAM Analysis of DeepSpectraNet on a Validation Set
Sample. Grad-CAM Combined refers to the combined model which takes
both MFCC and CQT features as input, while Grad-CAM Separated is

obtained splitting the combined model into two separate models, one for
each feature set.

allowing the model to refine its decision-making by shifting its attention
towards different time frames and audio characteristics.

Interestingly, in both the validation and test sets, the model utilized
CQT to extract information from the beginning and end of the audio clip,
while MFCCs were used for the middle section. This behavior suggests that

the model effectively uses both features to capture distinct temporal details.

Is the Fakeness Contained in Small Details? It is reasonable to hy-
pothesize that the “fakeness” in audio data is captured within small, spe-
cific details, suggesting certain portions of the audio may be more likely
to reveal signs of artificial generation. To test this hypothesis, the sam-
ples were divided into four categories: True Positives (TP), True Negatives
(TN), False Positives (FP), and False Negatives (FN). From each cate-
gory, min(150, num_samples_in_class) samples were randomly selected and
on them was calculated the average Grad-CAM activation, as well as the
number of highly activated pixels (defined as pixels with values greater than
0.6). These results are presented in Figures 4.24a, 4.24b, 4.25a, and 4.25b.

104

CQT test Input

CQT test GradCAM Combined CQT test GradCAM Separated

MFCC test Input MFCC test GradCAM Combined

) I_/IFCCESt gag:A:M Separated

Figure 4.23: Grad-CAM Analysis of DeepSpectraNet on a Test Set Sam-
ple. Grad-CAM Combined refers to the combined model which takes both
MFCC and CQT features as input, while Grad-CAM Separated is obtained
splitting the combined model into two separate models, one for each feature
set.

True Positives - CQT Grad-CAM

False Positives - CQT Grad-CAM True Positives - MFCC Grad-CAM

False Positives - MFCC Grad-CAM

-

AVG #pixels > 0.6: 1277 AVG #pixels > 0.6: 793 AVG #pixels > 0.6: 1079 AVG #pixels > 0.6: 750

True Negatives - CQT Grad-CAM

False Negatives - CQT Grad-CAM

True Negatives - MFCC Grad-CAM

False Negatives - MFCC Grad-CAM

AVG #pixels > 0.6: 1001 AVG #pixels > 0.6: 1337 AVG #pixels > 0.6: 817

(a) (b)

Figure 4.24: Average Grad-CAM of DeepSpectraNet on Validation Set Sub-
set splitted in TP (upper left), TN (lower left), FP (upper right), FN (lower
right) samples. a) Results for the CQT features, b) Results for the MFCC
features.

Contrary to the hypothesis, the results demonstrated that both the True

105

True Positives - CQT Grad-CAM

False Positives - CQT Grad-CAM True Positives - MFCC Grad-CAM False Positives - MFCC Grad-CAM

L

AVG #pixels > 0.6: 1087 AVG #pixels > 0.6: 514 AVG #pixels > 0.6: 1003 AVG #pixels > 0.6: 1381

True Negatives - CQT Grad-CAM False Negatives - CQT Grad-CAM True Negatives - MFCC Grad-CAM False Negatives - MFCC Grad-CAM

-

AVG #pixels > 0.6: 1202 AVG #pixels > 0.6: 574 AVG #pixels > 0.6: 1395 AVG #pixels > 0.6: 908

a) (b)

Figure 4.25: Average Grad-CAM of DeepSpectraNet on Test Set Subset
splitted in TP (upper left), TN (lower left), FP (upper right), FN (lower
right) samples. a) Results for the CQT features, b) Results for the MFCC
features.

Positive and True Negative classes displayed a similar number of highly
activated pixels across all circumstances. This indicates that the fakeness
of audio is not exclusively contained in small details, but may be dispersed
across larger areas of the audio representation.

Further analysis revealed differing model behavior between real and fake
audio samples. In the validation set, when analyzing CQT features, the
model tended to focus on the upper part of the image for real audio (TP),
whereas for fake audio (TN), the focus shifted to the middle portion. This
suggests that the model identifies fakeness by analyzing higher frequencies
in the CQT representation, while certain lower-frequency bands are char-
acteristic of real audio. For MFCC features, the situation appears to be
reversed: the model emphasizes broader details (lower MFCC coefficients)
in fake audio, while for real audio, it concentrates on finer details (higher
MFCC coefficients). These observations were consistent in the test set as
well.

Notably, the DeepSpectraNetLite model provided distinct insights. As
highlighted earlier in the Mapper analysis, this model focuses on smaller,
more concentrated regions of the input. In this case, the number of highly
activated pixels in the TP class was roughly double that of the TN class,
supporting the idea that small, highly distinctive features play a significant

role in identifying fake audio.

106

In conclusion, while detecting fakeness does not necessarily require fo-
cusing exclusively on small details, these subtle cues do exist, and leveraging
them can enhance model performance. According to the results from Deep-
SpectraNetLite, these important details are primarily located in the higher
frequencies of CQT features and in mid-range MFCC coefficients (between
15 and 50).

The Grad-CAM analysis provided valuable insights into the model’s
decision-making process. By analyzing the activation maps of individual
feature sets (MFCC and CQT) and their combined versions, it became clear
that the combination of features enabled the model to focus on a broader
range of audio characteristics. While CQT features were dominant in cer-
tain cases, MFCCs still played an essential role in enhancing the model
performance.

Additionally, the hypothesis that fakeness could be contained in small
details was partially supported. Although fakeness detection did not rely
solely on small details, models like DeepSpectraNetLite demonstrated a ten-
dency to focus on specific fine-grained features. This suggests that further
refinement of the model’s attention to such details could potentially improve

classification performance.

107

Chapter 5
Conclusions

Through comprehensive experimentation, this research has explored the
detection of audio deepfakes using traditional machine learning and deep
learning approaches. The study has contributed significantly to the field
by answering seven research questions (see Section 1.3) and by proposing
four novel deep learning models that substantially enhance audio deepfake

detection.

¢ RQ1: What are the preliminary factors that most influence cor-
rect deepfake detection?
The key factors influencing deepfake detection performance are the ex-
traction interval, window length, and hop length used for spectral feature
extraction. In both approaches, a 2-second extraction interval delivered
the best classification performance. While the optimal window length
was not definitive in traditional ML models, deep learning models con-
sistently favored shorter window lengths, especially for MFCC and CQT
features. The hop length impact difference between a quarter and a half

of the window length was found to be negligible on the ML approach.

¢ RQ2: What are the most important audio features for accu-
rately identifying deepfakes?
Among the audio features examined, MFCC and CQT stood out as the
most critical for accurately identifying deepfakes. MFCCs excelled in
learning performance, while CQT features demonstrated exceptional gen-
eralization to unseen algorithms, particularly when processed by deep

learning models.

e RQ3: How effective are traditional machine learning models in

detecting audio deepfakes?

108

Traditional ML models like RF, SVM, Catboost, and LR performed well
in learning, with Catboost achieving 99% balanced accuracy. However,
they struggled to generalize, particularly on unseen algorithm data, with
Logistic Regression reaching only 80%. RF proved to be the best all-
around performer, and further improvement was observed combining the
features and selecting the most relevant ones using Recursive Feature
Elimination, where RF achieved a balanced accuracy of 92% on the unseen

algorithm data.

RQ4: Can deep learning models represent a leap forward in au-
dio deepfake detection?

The introduction of CNN-based architectures (VGG16 and MobileNetV3)
significantly improved performance compared to traditional ML mod-
els, especially in handling unseen algorithm data. The proposed fam-
ily of DeepSpectraNet models, leveraging combined MFCC and CQT
features enhanced by CNN-based mappings, achieved with its top per-
former, balanced accuracy of 99.81% on validation and 98.37% on un-
seen algorithm data. Furthermore, the fully end-to-end model, DeepSpec-
traNetE2E, reached 98.69% balanced accuracy on validation and 94.20%
on the test set, demonstrating the potential of automated feature extrac-

tion from raw audio.

RQ5: How does feature combination impact the performance of
models in detecting audio deepfakes?

Combining multiple audio features had a clear positive impact on both
ML and DL models. MFCC and CQT, in particular, offered complemen-
tary strengths, with MFCC excelling in learning performance and CQT

showing superior generalization, especially in deep learning models.

RQ6: How can the features be improved to enhance the detec-
tion of audio deepfakes?

The detection performance of standard audio features can be significantly
improved through feature combination, CNN-based mapping, and the
addition of a CNN + Attention based preprocessing module. The dual-
branch mapping strategy employed in DeepSpectraNet models demon-
strated that enabling the network to enhance different aspects of the

features contributed to substantial gains in classification accuracy.

RQ7: What do deep learning models focus on in their decision-

making process?

Explainability techniques such as Grad-CAM and Mapper Analysis re-
vealed that deep learning models primarily focus on frequency-related
information, capturing broad audio characteristics from lower MFCC co-
efficients and finer details from higher frequencies in CQT.

The best models dynamically adjusted their focus based on the task at
hand, favoring MFCC for validation set data and CQT for test set data.
The lightweight DeepSpectraNetLite model was found to detect deepfake
artifacts by focusing on small details, suggesting that further refinement

in this area could enhance detection accuracy.

In conclusion, this thesis has advanced the field of audio deepfake detection
by automating feature extraction and proposing four novel models that sur-
pass existing ones in the literature. The DeepSpectraNet family of models,
with their feature mapping and enhancement strategies, offers high detec-
tion accuracy and strong generalization performance.

While the current models show promising results, further investigation
is required to enhance the generalization capabilities of the fully end-to-end
models, particularly for unseen deepfake generation techniques. Another
area for research is the evaluation of the models’ robustness against ad-
versarial attacks, which could potentially undermine their performance in
real-world scenarios. Additionally, optimizing computational efficiency and
exploring lightweight models suitable for real-time detection in resource-
constrained environments will be key areas for future research. Finally, a
possible extension of this work could involve the integration of multimodal
features, combining audio and textual information, to provide the models
with a more comprehensive understanding of the context in which the audio

was generated.

Bibliography

1]

2]

[9]

Yandex. Catboost enables fast gradient boosting on decision trees using
gpus, 12 2018. Accessed: 2024-17-10.

Haifeng Wang and Teng Wu. Knowledge-enhanced deep learning for
wind-induced nonlinear structural dynamic analysis. Journal of Struc-
tural Engineering, 146, 11 2020.

Sumit Saha, December 2018. Accessed: 2024-18-10.

[an Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. In Advances in neural information processing
systems, pages 2672-2680, 2014.

Christoph Bregler, Michele Covell, and Malcolm Slaney. Video rewrite:
Driving visual speech with audio, 01 1997.

Justus Thies, Michael Zollhofer, Marc Stamminger, Christian
Theobalt, and Matthias Niefiner. Face2face: Real-time face capture
and reenactment of rgb videos. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2387-2395, 2016.

Adrienne de Ruiter. The distinct wrong of deepfakes, December 2021.

Ivan Perov, Daiheng Gao, Nikolay Chervoniy, Kunlin Liu, Sugasa
Marangonda, Chris Umé, Mr. Dpfks, Carl Shift Facenheim, Luis RP,
Jian Jiang, Sheng Zhang, Pingyu Wu, Bo Zhou, and Weiming Zhang.
Deepfacelab: Integrated, flexible and extensible face-swapping frame-
work, 2021.

Yusheng Tian, Jingyu Li, and Tan Lee. Creating personalized synthetic
voices from articulation impaired speech using augmented reconstruc-
tion loss. In ICASSP 202/ - 2024 IEEFE International Conference on

111

[10]

[11]

[12]

[15]

[16]

[19]

[20]

Acoustics, Speech and Signal Processing (ICASSP), pages 11501-11505,
2024.

Rachel Gordon. 3 questions: What you need to know about audio
deepfakes, March 2024. Accessed: 2024-18-10.

KnowledgeNile. Applications of deepfake technology: Positives and
dangers. Accessed: 2024-18-10.

Zaynab Almutairi and Hebah Elgibreen. A review of modern audio
deepfake detection methods: Challenges and future directions. Algo-
rithms, 15(55):155, May 2022.

Telegraph Reporters. “deepfake” video shows volodymyr zelensky
telling ukrainians to surrender. The Telegraph, March 2022.

A.J. Hunt and A.W. Black. Unit selection in a concatenative speech
synthesis system using a large speech database. In 1996 IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing Con-

ference Proceedings, volume 1, pages 373-376 vol. 1, 1996.

Heiga Zen, Andrew Senior, and Mike Schuster. Statistical parametric
speech synthesis using deep neural networks. In 2013 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, page
7962-7966, Vancouver, BC, Canada, May 2013. IEEE.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,
Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and

Koray Kavukcuoglu. Wavenet: A generative model for raw audio, 2016.

Mohammad Reza Hasanabadi. An overview of text-to-speech systems

and media applications, 2023.

Zahra Khanjani, Gabrielle Watson, and Vandana P. Janeja. Audio
deepfakes: A survey. Frontiers in Big Data, 5, 2023.

Jiangyan Yi, Chenglong Wang, Jianhua Tao, Xiaohui Zhang, Chu Yuan
Zhang, and Yan Zhao. Audio deepfake detection: A survey, 2023.

Jiangyan Yi, Ye Bai, Jianhua Tao, Haoxin Ma, Zhengkun Tian, Chen-
glong Wang, Tao Wang, and Ruibo Fu. Half-truth: A partially fake
audio detection dataset, December 2023. arXiv:2104.03617 [cs, eess].

[21] Abhishek Dixit, Nirmal Kaur, and Staffy Kingra. Review of audio
deepfake detection techniques: Issues and prospects. Ezxpert Systems,

40(8):e13322, 2023.

[22] Clara Borrelli, Paolo Bestagini, Fabio Antonacci, Augusto Sarti, and
Stefano Tubaro. Synthetic speech detection through short-term and
long-term prediction traces. FURASIP Journal on Information Secu-
rity, 2021(1):2, April 2021.

[23] Massimiliano Todisco, Xin Wang, Ville Vestman, Md Sahidullah, Hec-
tor Delgado, Andreas Nautsch, Junichi Yamagishi, Nicholas Evans,
Tomi Kinnunen, and Kong Aik Lee. Asvspoof 2019: Future horizons

in spoofed and fake audio detection, 2019.

[24] Janavi Khochare, Chaitali Joshi, Bakul Yenarkar, Shraddha Suratkar,
and Faruk Kazi. A deep learning framework for audio deepfake detec-
tion. Arabian Journal for Science and Engineering, 47(3):3447-3458,
March 2022.

[25] Tianyun Liu, Diqun Yan, Rangding Wang, Nan Yan, and Gang Chen.
Identification of fake stereo audio using svm and cnn. Information,
12(7), 2021.

[26] Emily R. Bartusiak and Edward J. Delp. Frequency domain-based
detection of generated audio, 2022.

[27] Run Wang, Felix Juefei-Xu, Yihao Huang, Qing Guo, Xiaofei Xie, Lei
Ma, and Yang Liu. Deepsonar: Towards effective and robust detection

of ai-synthesized fake voices, 2020.

[28] Tiangi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, volume 11 of KDD
'16, page 785-794. ACM, August 2016.

[29] Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. Catboost:

gradient boosting with categorical features support, 2018.

[30] Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev,
Anna Veronika Dorogush, and Andrey Gulin. Catboost: unbi-

ased boosting with categorical features, 2019.

[31]

32]

[34]

[35]

[37]

[38]

Kunihiko Fukushima. Neocognitron: A self-organizing neural network
model for a mechanism of pattern recognition unaffected by shift in
position. Biological Cybernetics, 36(4):193-202, April 1980.

Ricardo Reimao and Vassilios Tzerpos. For: A dataset for synthetic
speech detection. In 2019 International Conference on Speech Tech-
nology and Human-Computer Dialogue (SpeD), page 1-10, Timisoara,
Romania, oct 2019. IEEE.

Tomi Kinnunen, Md Sahidullah Sahidullah, Héctor Delgado, Massim-
iliano Todisco, Nicholas Evans, Junichi Yamagishi, and Kong Aik Lee.
The asvspoof 2017 challenge: Assessing the limits of replay spoofing
attack detection. In Proceedings of INTERSPEECH, 2017.

Junichi Yamagishi, Xin Wang, Massimiliano Todisco, Md Sahidullah,
Jose Patino, Andreas Nautsch, Xuechen Liu, Kong Aik Lee, Tomi Kin-
nunen, Nicholas Evans, and Héctor Delgado. Asvspoof 2021: acceler-

ating progress in spoofed and deepfake speech detection, 2021.

Jiangyan Yi, Ruibo Fu, Jianhua Tao, Shuai Nie, Haoxin Ma, Chenglong
Wang, Tao Wang, Zhengkun Tian, Xiaohui Zhang, Ye Bai, Cunhang
Fan, Shan Liang, Shiming Wang, Shuai Zhang, Xinrui Yan, Le Xu,
Zhengqi Wen, Haizhou Li, Zheng Lian, and Bin Liu. Add 2022: the
first audio deep synthesis detection challenge, 2024.

Jiangyan Yi, Jianhua Tao, Ruibo Fu, Xinrui Yan, Chenglong Wang,
Tao Wang, Chu Yuan Zhang, Xiaohui Zhang, Yan Zhao, Yong Ren,
Le Xu, Junzuo Zhou, Hao Gu, Zhengqi Wen, Shan Liang, Zheng Lian,
Shuai Nie, and Haizhou Li. Add 2023: the second audio deepfake
detection challenge, 2023.

Nicolas M. Miiller, Pavel Czempin, Franziska Dieckmann, Adam Frogh-
yar, and Konstantin Bottinger. Does audio deepfake detection gener-
alize?, 2022.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,
and Adam Lerer. Automatic differentiation in pytorch. In NIPS-W,
2017.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Farkhund Igbal, Ahmed Abbasi, Abdul Rehman Javed, Zunera Jalil,
and Jamal Al-Karaki. Deepfake audio detection via feature engineering

and machine learning.

Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual.
CreateSpace, Scotts Valley, CA, 2009.

Selver Ezgi Kiiciikbay, Adnan Yazici, and Sinan Kalkan. Hand-crafted
versus learned representations for audio event detection. Multimedia
Tools and Applications, 81(21):30911-30930, September 2022.

Steven Camacho, Dora Maria Ballesteros, and Diego Renza. Fake
speech recognition using deep learning. In Juan Carlos Figueroa-
Garcia, Yesid Diaz-Gutierrez, Elvis Eduardo Gaona-Garcia, and Al-
varo David Orjuela-Canon, editors, Applied Computer Sciences in En-

gineering, pages 3848, Cham, 2021. Springer International Publishing.

Taiba Majid Wani, Syed Asif Ahmad Qadri, Danilo Comminiello, and
Irene Amerini. Detecting audio deepfakes: Integrating cnn and bilstm

with multi-feature concatenation, 2024.

Karthik Sivarama Krishnan and Koushik Sivarama Krishnan. Mfaan:
Unveiling audio deepfakes with a multi-feature authenticity network.
In 2023 9th International Conference on Signal Processing and Com-
munication (ICSC). IEEE, December 2023.

Ameer Hamza, Abdul Rehman Javed, Farkhud Iqgbal, Natalia Kryvin-
ska, Ahmad Almadhor, Zunera Jalil, and Rouba Borghol. Deepfake

audio detection via mfcc features using machine learning. IEEFE Ac-
cess, PP:1-1, 01 2022.

Fawziya M. Rammo and Mohammed N. Al-Hamdani. Detecting the
speaker language using cnn deep learning algorithm. Iraqi Journal For
Computer Science and Mathematics, 3(1):43-52, Jan. 2022.

Appendix A

Feature Engineering

Supplementary Results

116

rf f1 on test set
0.58 0.56 0.54 0.54 0.54 0.46
0.59 0.55 0.6 057 0.57 0.44
0.57 0.49 059 9 0.42
0.65 0.57 [0.74 057
€ 2 3z 5 § ¢
% E B8 % s F
o g2 3 B]
§ & ¢ 5 ¢
S T S g 8
FR-
rf bal_acc on test set
27072 05 055 0.66 0.56 0.53 0.57 0.56
~-062 052 0.52 0.67 061 0.53 0.6 055
1-055 0.54 0.52 0.65 0.61 0.53 059 055
~-059 051 0.46 0.67 059 0.52 0.62 054
] 5 £ 0 £ £ o
g 8§ % E ©® 3 2 &
E o 2 % B 4
g g 3 o 9
g S 5§ E @
5 T 2 8% ¢
I
a © e
L g
rf f1 on val set
2 (¥ 0.68 [LEEYI073] 0.7 1017072
- (7] 0.72 [UEEY 0.73 0.74 0.72 0.71
d [XF] 0.74 [XF] 075 0.75
~
& 8 5 & % E B %
E o € 3 B]
£ g 2 - 2
g s 8 £ %
5 E oS g 8
g I a 9
£ & 2
& g g
rf bal_acc on val set
a 0.74 0.61 0.74 0.66 0.63 0.65 0.66
- 1) 0.64 il 0.67 0.65 0.67 0.66
i} 0.69 0.66 0.69 0.66
~ 0.79 (34 068 0.67 0.69 0.64
¢ & & 2 B £ £ g
¢ 8§ % E B B S5 B
E o € 3 8 g
5 5 5 8 $
£ s 8 £ 38
A
& 3 g
g 8

rf f1 on train set

0
b 1 11 1|1
= 1 101 1|1
in
© 1 11 1|1
~ 1 11 1 [1
T £ £ g
g : 8 8 8
o 2 3 8 4
3 1
g L
5 5 8 8
© £ F & 5
g £ & g
& g]
g 8
rf bal_acc on St

t
1

215105

g_rate {UNEEE

chroma_stft SN

spectral_rolloff JENSueg

spectral_centroid JuNES

spectral_bandwidth LRl
zero_crossin

catboost f1 on test set

D2 NE] 02 059 057 0.55 053 0.54 0.46
~ Uk 021 0.6 056 0.61 0.54 055 0.45
N JUE] 027 0.59 049 0.61 057 0.54 0.4
~ QU] 031 0.55 0.51 0.64 0.67 0.64 0.44
9 s & 0 T F £ o

€ 8 % E g 8B o2 %

£]

g § 2 5 ¢

g S s B oo@

s T 5§ ¢

g F & 5

& g e

I 1 §

catboost bal_acc on test set

2 J0:73] 0.51 057 0.67 0.56 0.52 0.58 0.56
~-0.62 0.53 055 0.67 0.62 0.52 0.61 0.56
2-0.55 0.55 054 0.65 0.64 0.51 058 0.54
~-054 054 046 065 0.6 049 062 053
2 § 2 S ¢

g 52 8 £ @

S T 5 5% ¢

g B & 5

& g " ¢

I g

catboost f1 on val set

a 0.69 (71 0.75 0.71 0.72 0.74
a 0.74 0.75 073 0.73
o 075 | 074 072
~ 8 0.81 0.83 0.81 |7/}
o 2 3 ®]

£ @ ° ! o

g S5 Eog

T g

S g = §‘

g &

& g) g

catboost bal_acc on val set
0.75

g

chroma_stft
spectral_centroid
spectral_bandwidth
spectral_rolloff

catboost f1 on train set
0.850.81 82 0.8:

0.87 0.81

0.88 0.82
0.91 0.88

215105

k]

micc [P

chroma_stft
spectral_centroi

spectral_bandwidth

spectral_rolloff

catboost bal_acc on train set
0.82 0.8

0.81 0.85|0.82

0.82 0.86 0.83

0.88 0.89 0.88

215105

0.89 0.88
=

id
ff

chroma_stft
spectral_rollof

spectral_centroi
spectral_bandwid

g_rate

zero_crossin

g_rate 17

zero_crossin

zero_crossin

g_rate

svm f1 on test set
£2-061 035 0.56 0.56 0.51 0.56 056 0.32
~-0.69 046 058 0.52 0.49 059 0.55 0.25
‘1068 05 056 0.44 043 061 054 0.3
~-0.63 053 0.52 0.43 045 0.66 0.59 0.31

%) e) k-] E= k=]
¢ 88 8§ 585 ¢

g s 3 2 g

g S &5 B @

S T S g 8

5 7 g 5

it

g g

svm bal_acc on test set

£-057 0.55 0.57 0.67 0.58 0.54 0.61 0.52
~- 06 061 055 0.67 059 054 0.6 053
“1-059 0.62 0.53 0.64 0.58 053 058 0.53
~-055 0.64 047 063 0.58 0.53 058 053
AR

E o € % 8 4

£ § 5 S5 =

g S &8 B oog

S T 23 ¢

g E & 3

a B g

LI §

svm f1 on val set

2 EE] 0.75 0.67 [0.77' 0.67 0.7 0.68 0.53
- [) 0.73 [U5 0.66 0.74 0.67 0.55
b} 0.7 062
~ . X .71 0.73 0.64
o 2 3 8 4

g E

£ = 8 £ 8§

° g 8 & 5

g g 7 ¢

g g

svm bal_acc on val set

2 K 068 0.63
~OKEY 0.69 0.66 0.76 0.64 0.65 0.65 0.62
2 JOEEY 0.71 0.69 0.66 0.65 0.66 0.64
~ 073 o.ssmom 0.65 0.66 0.65
8 8 & £ 2T g5 % 2
EY s B EOEogoE
2 s o
g -
5 < R
S £ 7 g £
¥ “ 2
& g g
svm f1 on train set
2 JEKIY 0.69 0.64 0.72 0.64 0.66 0.64 0.52
B 0.95 0.54
g 0.04 0.59
~ LKE] 0.74 onﬁmo.ss 0.7 0.69 0.62
g x 0 3 £ ¥ g
g & & 2 £]
g 8 % E g 8 2 &
£ § 8 2 2
8 S § g
S T 2 5 8
R
¥ o 3
& 3 3
g 8
svm bal_acc on train set
2 0.7 0.66 0.74 0.66 0.67 0.66 0.61
= 0.71 0.69 /) 0.67 0.68 0.68 0.64
i 0.73 07 /' 069 0.68 0.69 0.66
~ 0.74 0.72 - 073 0.7 0.72 0.68
P w B g £ g
& % E 3 8 B &
o 2 = 8
g 8§ % ¢ ¢
S T a8 8
g 8 & 5
& g ° ¢
L g

Ir f1 on test set
2—0.58 075 05 0.61 056 0.63 0.61
~-0.54 074 054 0.6 058 0.65 0.66
1-0.54 [U7F) 048 0.57 0.58 0.66 0.67
~-055 [FE] 0.47 053 062 071 0.72
@
13

g
g

chroma_stft
spectral_centroid
spectral_bandwidth
spectral_rolloff

Ir bal_acc on test set
0.57 0.49 0.68 056 0.55 0.59
054 05 0.69 059 0.56 0.63
0.56 0.46 0.69 0.6 0.56 0.62
0,?9 0.‘44 0.§7 0,?3 0.?6 0,§4

n
2057
054
-0.48
~-0.44

€

£

5
g

chroma_stft
spectral_centroid
spectral_bandwidth
spectral_rolloff

Ir f1 on val set
.81 X 1063 07 068
[F:E] 0.68 [UE3H 0.69 0.72 0.71

215105

spectral_bandwidth
spectral_rolloff

Ir bal_acc on val set
(/) 0.54 058 07 0.59 0.61 0.6
[J:E1 055 0.6 0.74 0.63 0.62 0.63
[J:Z8 0.57 0.61 0.75 0.66 0.63 0.64
(JZ} 058 06 (0.73 068 0.66 0.66

. E

215105

spectral_centroid
spectral_bandwidth
spectral_rolloff

Ir f1 on train set
X 0.66 0.56 0.71 0.56 0.6 0.59
(K78 0.67 0.59 0.74 0.6 0.62 0.62
() 0.67 06 074 0.64 0.64 0.64
(JE] 0.67 06 073 067 0.65 0.66

215105

E £

g
£
€

chroma_stft
spectral_centroid
spectral_bandwidth
spectral_rolloff

Ir bal_acc on train set
([0.55 0.58 0.71 0.58 0.59 0.59
8 056 0.6 0.74 0.62 0.62 0.62
(L) 0.57 0.61 0.74 0.66 0.64 0.64
(05 058 06 073 0.68 0.64 0.6

215105

spectral_centroid -
spectral_rolloff -

spectral_bandwidth -

ocoo0o
g_rate -2 & i &
2a8

0.51
0.51

oo
g_rate - & i
a2

zero_crossin

B
g_rate-o o & n
84335

zero_crossin

0.57
0.61

g_rate - ¢

zero_crossin

0.54

ooo
g_rate- o o &
-

zero_crossin

o000 o
Qo
-

g_rate - ¢

zero_crossin

zero_crossin

Figure A.1: Results of all the combinations of extraction intervals, feature
types and models of the traditional ML approach, evaluated with 2 metrics
on the three sets (train, test and validation). The num. samples is equalized
across intervals. On y-axis, the extraction interval is shown.

rf f1 on test set
2—0.72 0.75 0.19 0.62 0.6 0.58 0.59 0.57 0.48

catboost f1 on test set
£] 0.2 059 0.57 0.55 0.53 0.54 0.46

svm f1 on test set
2—0,55 0.71 0.27 0.56 0.57 0.51 0.56 0.56 0.31

Ir f1 on test set
2—0471 0.57 0.71 0.5 0.61 0.56 0.63 0.62 0.5

w

~ {EE10.75 0.23 0.67 0.6 0.69 0.65 0.67 0.54 S 0.21 0.6 0.56 0.61 0.54 0.55 0.45 -<—0,55-0.41 0.6 0.54 0.51 0.58 0.58 0.27 -<-0.54 0.75 0.51 0.6 0.58 0.65 0.66 0.51

0 o 1)1 0.27 059 0.49 0.61 0.57 0.54 0.4 “1-0.7 0.76 0.5 0.57 0.44 0.42 0.6 0.54 026 9 0.49 0.57 0.59 0.67 0.68 0.5

~ o -{OERREE] 0.31 0.55 0.51 0.64 0.67 0.64 0.44 «~ -0.75 0.63 0.53 0.52 0.43 0.45 0.66 0.59 0.31 «~ 0.47 0.53 0.62 0.71 0.72 0.55
Sy ko @ s Loe < g R o < 4 B o

g g8 % EEE ¢ € % EEE S ¢ g8 ¥ f EgEE g E 5 B¢
g g g S g 2

) £ 5%59‘ g 5%5?‘) g 5%:-2“ 5%52"

£ £ s 8 £ % £ s &8 £ d £ £ + 8 £ 3 258 E %

5 T S g% 8 5 5 2 g% 8 5 5 2 g 8 g 2 g 8

§E 83 §E & 3 FRE §E &3

- 3 - 2 & g 4 & g 3

L g L g L g LA g

rf bal_acc on test set

catboost bal_acc on test set

svm bal_acc on test set

Ir bal_acc on test set

a 0.64 0.51 055 0.68 0.56 0.52 0.57 0.55 2 /0.7110:73/0.51 0.57 0.67 0.56 0.52 0.58 0.56 2-0.64 0.6 0.54 0.57 0.68 0.58 0.53 0.61 0.53 2 {0 4 0.55 0.61 0.49 0.68 0.56 0.55 0.59 0.56
o 0.57 0.52 0.55 0.69 0.61 0.52 0.63 0.55 ~ -0.68 0.62 0.53 0.5 0.67 0.62 0.52 0.61 0.56 ~- 0.7 0.63 0.59 0.58 0.67 0.61 0.52 0.61 0.53 £ 0.52 0.57 0.49 0.69 0.59 0.56 0.63 0.57
9 059 0.53 0.5 0.67 0.62 0.52 0.61 0.56 7 -0.68 0.55 0.55 0.54 0.65 0.64 0.51 0.58 0.54 '2-0.74 0.63 0.63 0.53 0.63 0.58 0.53 0.58 0.52 "‘mo 48 0.55 0.46 0.68 0.61 0.56 0.63 0.57
~-0.64 059 0.51 0.46 0.67 0.59 0.52 0.62 054 ~-0.69 0.54 0.54 0.46 0.65 0.6 0.49 0.62 0.53 ~-0.75/0.55 0.64 0.47 0.63 0.58 0.53 058 0.53 ~ [U:J0.44 0.59 0.44 0.67 0.63 0.56 0.64 0.59
o Y 5 & 9 9B £ 0w g g Y &£ & @2 v £ ¥ g g v = 2 BT £ £ g g & v £ £ g
¢ $ 8 % E 38 8¢ g 8§ E ¢85 ¢ g 8 ¥ § e 88 ¢ g 2 ¥ § e8¢ 88 ¢
o E s 2 3 8 4 o E s 2 3 8 4 o E o 2 3 8 4 o E g 2 3 8 4
< 9 = < 9 ! El g = T 13 .
g g 2 5Eg E £ S5 Eg E £ o5 Ef g F 25 E g
5 T S g% 8 5 s 9 3% 8 5 5 2 g 8 5]
a B 2 a B 3 a B 4 a © 4
s R T8 R "R PR 8
rf f1 on val set catboost f1 on val set svm f1 on val set Ir f1 on val set
2 0.8 [8£Y0.79 0.77 [ATy 77075071 072 0.74 2 710.69 072 0.68 0.55 2 JUEFEEILXTY 0.65 /] 0.63 0.7 0.68 0.56
- 0.83 0.79 0.83 0.79 0.81 0.79 - 0.74 0.75 0.73 0.73 ~ o 65- 0. 7 0.57 r< 0.89 0. as (:E] 0.68 [1:E1 0.69 0.72 0.71 0.62
R 0.99 0.99/0.84 0.83/0.85 0.82/0.84 0.81 0, o b} 0.61 0.65
IR 0.99 0.99/0.86 0.86 0.87 0.85/0.87 0.84 ~ X .81 0. 074 «~ o71m073 064 9 X A . .67
2 o 2 2 B '] o 2 2 2 ' 2 2 g | o o € 2 B |
el £ g 2 - 2] £ g 2 -2 g g2 - 2 T £ g & 2
£ g S 5 og £ g S 5 E g S 5§ E g £ g S § E 3
5 E 205 8 kS E oo 08 8 E 2 g 8 S g 2 5 8
g T a g g B 2 ¢S g EF & 5 e 3 & 3
2 g " ¢ g g 7 ¢ &g 7 ¢ g g " ¢
L L B TR TR
rf bal_acc on val set catboost bal_acc on val set svm bal_acc on val set Ir bal_acc on val set
a 0.63/0.75 0.68 0.65 0.68 0.68 2 0.75 0.62 0.74 0.67 0.64 0.66 0.67 3 a ()] 0.57 058 0.7 0.59 0.61 0.6 0.54
o 065 ~ {ERAEE] /1 0.65 1/ 0.68 0.66 0.68 0.67 L0 LEE] 057 0.6 0.74 0.63 0.62 0.63 0.57
@ [XEIE 0.9 0.93 QS 0.68 0.67 0.7 0.67 2 L] 0.57 062 0.75 0.66 0.64 0.65 0.59
~ I .68 0.67 0.69 0.64 ~ 0.98 081K 69@0 69 0.68 0.71 0.66 073 oasmo 67 0. 65 o. 66 0. 65 o U058 0.6 0,73 0.68 0.66 0.66 0.59
& T g £t g ¢ v & 8w B £ ¥ g < 2 B £ £ g ¢ 8 5 £ 2 T £ £ g
@ e 8 2 & g &£ 8 % E ¢ EE R T % EEE B E g £ ¢ % E 8 3 2 &
o 2 3 8 4o o E o 2 3 8 o o 2 3 8 4 o E o 2 3 8 4o
5 5§ % g s O s I g 5 55§ 5
£ s 8 ¢ 8 £ s 8 3% 8 £ s 38 g 8 £ s 8 £ 8
° g s &5 ° £ 7 &5 ° £ 7 &5 N g8 &5
g & g £ & g £ & 5 &
& 3 g & 8 g & % H & 8 g
& N & N & N & N
rf f1 on train set catboost f1 on train set svm f1 on train set Ir f1 on train set
o B 1 T 1 1 1 [elo099 [EHENE A AR 2 ETEKE 0-7 0.63[0:73]0.64 0.65 0.63 0.52 2 JELUE] 0-67 0.57 [0:71] 0.56 0.61 0.59 0.5
~ 3 1 101 1)1 R 0.87/0.81 0.85 0.82 0.84 0.81 0.8 [~ LS 0.67 0.6 0.75 0.61 0.62 0.62 0.54
BE 1 1 101 1 1 el 0.880.82 0.850.82 0.84 0.81 0.8 [l 2 JEPI0EE] 0.67 0.59 0.74 0.64 0.64 0.64 0.57
~ 1 101 1 1 SR 0.91/0.88 0.89 0.87 0.89 0.87 0.4 RN 0.92 0.93 0.74/0.72 (111 0.69 0.7 0.69 0.62 ~ {IINNE]0.67 0.6 0.73 0.67 0.65 0.6 0.57
M s £ £ g M v v g ot g g 4 = 2 v £ £ 9 g L = 2 T £ £ g
g (R R §8gE:t iivEE3EBE ffgiiiiosod
o o £ 3 8 o o © 2 5 %8 o o o 2 3 8 o o 2 3 8 4
E s St F s B e S :g 5 E s S :g g B s S EFg
S [T S [5 E 208 8 § E 5§ 8
gL & 2 gL & ¢ g £ & 2 g5 & 2
& 3 g &g g & g g & ¢ g
& N & N & N & N
|_acc on train set catboost bal_acc on train set svm bal_acc on train set Ir bal_acc on train set
2 B 1 T 1 1 1 oo 2 FESEER 0.71 0.66 0.74 0.67 0.65 0.65 0.62 2 7] 0.58 0.58 0.71 0.59 0.6 0.6 0.55
PR 1 1 11 1 1 Rl (EPALROREEN O PAEE RO PR — (OEEIORETY 0.73 0.69 (1)) 0.68 0.69 0.68 0.64 — (:ANIKEY 0.58 0.61 0.76/ 0.63 0.62 0.62 0.57
. 1 101 1 1 el ELN PO ENOEERORP AT) PR 0.74 0.71 (0] 0.7 0.69 0.69 0.66) {JPNUEE] 0.57 0.6 0.75 0.66 0.63 0.64 0.59
~ 1 101 1 1 SR [XPCEECRCE RS ~ {XEIEE] 0.74 0.72 (151 0.73 0.7 0.72 0.68 ~ {UCENEE] 0.58 0.6 (0.73 0.68 0.64 0.66 0.6
M T £ £t g M M vz £ £ g g U = 2 v £ £ g < 2 B £ £ g
g 4 R g T8 EEE R g ¢ 85§ E g E B¢ ¢ % £ %55 %
2 o 2 = 8 4 h o 2 = ° 4 i o g 2 8 4 o g2 = &8 4
g s S %ot o 2 s St s 2 s S ¢t 5 $ ¢t ¢
5 T s g 8 S s 5 g 8 S g 2 g 8 S g 2§ 8
§E &3 §E &3 § % &5 R]
& g g & g g & % g & 8 g
& 8 & 8 & 8 & 8

Figure A.2: Results of all the combinations of extraction intervals, feature
types and models of the traditional ML approach, evaluated with 2 metrics
on the three sets (train, test and validation). The num. samples is not
equalized across intervals. On y-axis, the extraction interval is shown.

rf f1 on test set

~-031 | W 056 074 0.69
~ 1073 EEEREECRNEE]

g ¥ § & B

£ o B

£ =

I g

s g

g

&

rf bal_acc on test set

~- 054 [06 075 062
~- 071 NEEN 068 071 0.62
g ¥ § & B

E o s

£]

9 g

s g

&

&

rf f1 on val set
0.87

0.93 0.87

096 0.93 093

chroma_stft
rms
spectral_rolloff

rf bal_acc on val set
0.92

(L8 076 072 0.66

o~ MUEERELER 0.67 0.68 0.57
Lox 4

5 E B

© e

g £

g B

s g

g

E

rf f1 on train set

o = w
& 85 £ & B
€ o E
£]

s s

e g

4

&

rf bal_acc on train set

1
=

chroma_stft
spectral_rolloff [l

Figure A.3: Results of all the combinations of extraction

0.64

g_rate

zero_crossin

D
g_rate- & &
3 86

g_rate zero_crossins

zero_crossin

°
2

rate- 2 @

9! o a

g_rate zero_crossins

zero_crossin

2
e

|
o

zero_crossin

S
N

svm f1 on test set

catboost f1 on test set

xgb f1 on test set

~-047 074 036 056 056 047 ~- 049 07 052 067 068 056 - 053 L7 054 07 07
~- 06 m 05 058 046 043 «- 0.74 NUCH m 0.78 NOVERERNENRZE 0.93 | 0.82 | 0.79 0.77
g & § & 5 & g & § £ & % -
E o E o E o H o E o B
£ o 2 £] 2 £]
2 g @ e g @ 2 g
s 5 g @ 5
& i & o &
e 4
3 g
8 8
svm bal_acc on test set catboost bal_acc on test set Xxgb bal_acc on test set
~- 055 074 058 068 063 051 ~- 06 o/ 061 072 064 049 - 06 075 061 072 063
~- 07 m 0.64 069 059 049 «~- 07 MMUJEM 069 075 063 046 - 0.67 m 0.7 072 062
& & § & 5 ¢ g 8 § ¢t & % & ¥ % & &
E o H 5 £ - H g E o H
€ - g £ -2 E =
2 g @ e g @ 2 g
S g 8 S g 8 S g
& o & o &
4 e
3 g
] &

0.96

0.95

0.96

0.98

9
&
13

svm f1 on val set
0.95 | 0.84

0.94 0.85

0.82

chroma_stft
spectral_rolloff- <

svm bal_acc on val set

0.93 1 0.81 0.78 WNAS
(CER 00 074 0.67
g £ £ %
o B
g g
g T
S g

g
&

svm f1 on train set

0.95 = 0.85 078 BN}
0.96 0.86 0.79 0.7
=) .
g £ £ 5
o s
2 g
s T
s g

H
g

svm bal_acc on train set
0.86 | 0.79 Uy
0.87

0.8

0.73

chroma_stft
spectral_rolloff -

catboost f1 on val set
23

0.95 | 0.88 @ 0.86

xgb f1 on val set
095 088 085 085

b ~ 0.96 093 092 09 096 093 092 09
£ g 8 § & &8 ¢ g 8 § & &
ul £ | E H g £) E 2
o g 5 o g g
G g I s =
2 £ 5 2 £ 5
8 g g
5, ° g 5 ° g

o
g g
] &
catboost bal_acc on val set xgb bal_acc on val set
0.69 -~ SUCEXE 076 07 068 ~ 0.74 0.69
069 o~ MEGENELE 075 075 062 063 «~ 0.73 061
) £ | E 5 g £) E 2
o 2 5 o 2 g
H s I s e
2 £ 5 8 £ 5
8 il g
S, i g g o g
& o &
g H
] &
catboost f1 on train set xgb f1 on train set
0.72 - 1
0.7 ~ 1
% g v § & & ¢ g 8 § & &
o € | ul E 53
o o e o e g
H s I s e
2 £ 5 8 £ 5
8 il g
5 ° g 5 ° g
2 ° e o
3 5
] 8
catboost bal_acc on train set xgb bal_acc on train set

072 ~ - 1

071 ~ 1

£ g 8 § ¢ & ¢ & 8 § & &
) E o 3 hal E o 3
2 £ -2 E o
@ 2 £ @ 2 g
4 £ £ 8 £ g
g, ° g ° g
2 ? e o
3 5

] 8

0.6

. °
zero_crossing_rate- 5

o o
g_rate- &
& N

zero_crossini

g_rate

zero_crossini

o o
g_rate- & o
g 3

zero_crossini

2
e

|
o

zero_crossini

2
e

|
o

zero_crossini

intervals, feature

types and models of the neural features approach based on MobileNetV3.
The evaluation is made with 2 metrics on the three sets (train, test and

validation). The images are normalized as illustrated in Listing 3.1. On
y-axis, the extraction interval is shown.

rf f1 on test set - layer 43

- 047 0.77 0.71 0.7 0.72 0.68
g & 2 = o
g g 3 £ s ®
£ o s)
£] g
2 £ g
] 8
S H g
e
3
8
rf bal_acc on test set - layer 43
~- 058 0.8 0.61 0.71 0.63 0.51
~- 068 0.85 0.58 0.55 0.51
g g £ £ 5 %
E o s)
£ = 2
2 £ 2
] 8
S H g
e
3
]
rf f1 on val set - layer 43
- .94 [X:E} 0.88 0.87 0.86 0.86
~ 0.96 [XE} 0.91 0.93 0.93
= o M
8 g £ E s 2
E o) ul
£ = 2
2 [2
g
° g 5,
o e
3
]
rf bal_acc on val set - layer 43
0.88 [X: 0.66 0.76 0.66 0.65
~ JECE] 0.52 0.67 0.56 0.62
g £ 3 s £
E o s ul
£ = 2
2 [@
£ £ a
S H gl
4
3
]
rf f1 on train set - layer 43
- 1 1 1 1 1 1
~ 1 1 1 1 1
= w ™
g g g £ s 2
E o) ul
£ = 2
2 [@
£ B 8
° g 5,
o e
3
]
rf bal_acc on train set - layer 43
- 1 1 1 1 1 1
~ 1 1 1 1
g g - g 5 g
£ o s =
£ = 2
2 [@
£ 5 a
© g g,
o 2
3
]

- 044
~ JEE
g
H
- 055
~- 063
H

rf f1 on test set - layer 33

0.81 0.78 0.74 0.75 0.7
0.91 0.84 0.84 0.84 m
- & o = 3
g 2 E S ®
© S !
3 o
s T3
£ 5 2
] 8
° g 5,
&
4
3
]
rf bal_acc on test set - layer 33
0.83 0.65 0.72 0.63 0.52
0.9 0.52 0.74 0.53 0.51
© E !
3 o
s T3
£ B 8
° g §,
&
4
3
]

rf f1 on val set - layer 33

0.94 0.88 0.86 0.87 0.86
0.95 [XE} 0.92 0.92 0.92
- o M
g g £ £ S H
£ o) ul
£ = 2
] 8
S H g
4
]
]
rf bal_acc on val set - layer 33
EE 089 0.89 0.62 0.75 0.65 0.61
~- 071 0.83 0.5 0.67 0.53 0.61
8 H £ £ s H
£ o s)
£ = 2
2 [@
£ B 8
S H g
4
]
]
rf f1 on train set - layer 33
- 1 1 1 1 1 1
~ 1 1 1 1 1 1
= o ™
g g g £ s 2
E o s)
£ = 2
2 [@
£ B 8
S H g
4
]
]
rf bal_acc on train set - layer 33
- 1 1 1 1 1 1
~ 1 1 1 1 1
= o ™
g g g £ s 2
£ il s =
£ = 2
2 [@
£ £ a
° g §,
o 2
3
]

Figure A.4: Results of all the combinations of extraction intervals,

2

-

- 0.87 0.87 0.59

~

g
2
£

0.55

0.5

mfcc-

0.58

mfcc-

=

mfcc

=

mfcc

rf f1 on test set - layer 23

0.83 0.78

0.94 0.84 0.82 0.84

0.83

- & o = @
g 7, E S &
© e !
3 o
s T3
£ 5 2
g 8
° g §,
“a o
g
8
rf bal_acc on test set - layer 23
0.85 0.58 0.69 0.64 0.54
0.93 0.5 0.67 0.52 0.51
P
g 7, E S &
© E !
] o
s I
£ G 8
© g §,
@ o
]
8
rf f1 on val set - layer 23
0.93 0.88 0.85 0.87 0.86
0.95 0.93 0.91 [XE} [XE}
& & 2 [@
g 7, E s s
© E !
] o
s -
£ G 8
© g §,
@ o
]
8
rf bal_acc on val set - layer 23
0.74 0.64 0.62
0.74 0.5 0.59 0.54 0.57
© E !
o
g -
£ S 8
S H g
4
g
8
rf f1 on train set - layer 23
1 1 1 1 1
1 1 1 1 1
= o
T 5 8 E ¢
o s]
o
s Tt
£ B 8
S H g
4
]
8
rf bal_acc on train set - layer 23
1 1 1 1 1
1 1 1 1
o o ™
T 8§ & 5 %
o °]
] o
g T
£ S 8
S H g
4
3
8

types and models of the neural features approach based in VGG16. The
evaluation is made with 2 metrics on the three sets (train, test and valida-
tion). The images are normalized as illustrated in Listing 3.1. On y-axis,
the extraction interval is shown.

Appendix B

Models Supplementary Results

class Mapper3D (nn.Module):
def __init__(self):

super (Mapper3D, self).__init__()

self.convl = nn.Conv2d(in_channels=1,
out_channels=64, kernel_size=1)

self .bnl = nn.BatchNorm2d (64)

self.conv2 = nn.Conv2d(in_channels=64,
out_channels=128, kernel_size=1)

self.bn2 = nn.BatchNorm2d (128)

self.conv3 = nn.Conv2d(in_channels=128,
out_channels=3, kernel_size=1)

self.bn3 = nn.BatchNorm2d (3)

self .upsample = nn.Upsample(scale_factor=2,

mode=’bilinear’, align_corners=True)

def forward(self, x): # Input: (B, 1, 112, 112)
x = F.relu(self.bnl(self.convli(x))) # (B, 64,

112, 112)
X

112, 112)

F.relu(self.bn2(self.conv2(x))) # (B, 128,

x = self.bn3(self.conv3(x)) # (B, 3, 112, 112)
X = torch.sigmoid(x) # scale to [0, 1]

x = self.upsample(x) # (B, 3, 224, 224)
X
T

x * 255.0 # scale to [0, 255]

eturn x

Listing B.1: 3D Mapper CNN Implementation (64-128-3-sigmoid)

class Mapper3D (nn.Module):
def __init__(self):

super (Mapper3D, self).__init__()

121

16

self.convl = nn.Conv2d(in_channels=1,
out_channels=64, kernel_size=1)

self.bnl = nn.BatchNorm2d (64)

self.conv2 = nn.Conv2d(in_channels=64,
out_channels=128, kernel_size=1)

self.bn2 = nn.BatchNorm2d (128)

self.conv3 = nn.Conv2d(in_channels=128,
out_channels=3, kernel_size=1)

self .bn3 = nn.BatchNorm2d (3)

self .upsample = nn.Upsample(scale_factor=2,
mode=’bilinear’, align_corners=True)
self.scale = nn.Parameter (torch.ones(1, 3, 1,

1)) # Learnable scale factor
self .shift = nn.Parameter (torch.zeros(1, 3, 1,
1)) # Learnable shift factor

def forward(self, x): # Input: (B, 1, 112, 112)
x = F.relu(self.bnl(self.convli(x))) # (B, 64,

112, 112)
X

112, 112)
x = self.bn3(self.conv3(x)) # (B, 3, 112, 112)

x = self.scale * x + self.shift # (B, 3, 112,

F.relu(self.bn2(self.conv2(x))) # (B, 128,

112)
X = torch.sigmoid(x) # scale to [0, 1]
x = self .upsample(x) # (B, 3, 224, 224)
x * 255.0 # scale to [0, 255]

return X

Listing B.2: 3D Mapper CNN Implementation (64-128-3-learnable)

X

class Mapper3D (nn.Module):
def __init__(self):

__init__Q)

super (Mapper3D, self).

self.convl = nn.Conv2d(in_channels=1,
out_channels=64, kernel_size=1)

self.bnl = nn.BatchNorm2d (64)

self.conv2 = nn.Conv2d(in_channels=64,
out_channels=128, kernel_size=1)

self .bn2 = nn.BatchNorm2d (128)

self.conv3 = nn.Conv2d(in_channels=128,
out_channels=3, kernel_size=1)

self.bn3 = nn.BatchNorm2d (3)

self .upsample = nn.Upsample(scale_factor=2,

mode=’bilinear’, align_corners=True)

N

def forward(self, x): # Input: (B, 1, 112, 112)
x = F.relu(self.bnl(self.convli(x))) # (B, 64,
112, 112)
X
112, 112)
X self .bn3(self.conv3(x)) # (B, 3, 112, 112)
x = self.upsample(x) # (B, 3, 224, 224)

return x

Listing B.3: 3D Mapper CNN Implementation (64-128-3-none)

F.relu(self .bn2(self.conv2(x))) # (B, 128,

class Mapper3D (nn.Module):
def __init__(self):

__init__Q)

super (Mapper3D, self).

self.convl = nn.Conv2d(in_channels=1,
out_channels=64, kernel_size=5, padding=2)

self.bnl = nn.BatchNorm2d (64)

self.conv2 = nn.Conv2d(in_channels=64,
out_channels=3, kernel_size=1)

self .bn2 = nn.BatchNorm2d (3)

self .upsample = nn.Upsample(scale_factor=2,

mode=’bilinear’, align_corners=True)

def forward(self, x): # Input: (B, 1, 112, 112)
x = F.relu(self.bnl(self.convli(x))) # (B, 64,

112, 112)

x = F.relu(self.bn2(self.conv2(x))) # (B, 3,
112, 112)

X = torch.sigmoid(x) # scale to [0, 1]

x = self .upsample(x) # (B, 3, 224, 224)

X = x * 255.0 # scale to [0, 255]

return x

Listing B.4: 3D Mapper CNN Implementation (64x5-3x1-sigmoid)

class Mapper3D(nn.Module) :
def __init__(self):
super (Mapper3D, self).__init__()
self.convl = nn.Conv2d(in_channels=1,
out_channels=3, kernel_size=1)
self .bnl = nn.BatchNorm2d (3)
self .upsample = nn.Upsample(scale_factor=2,

mode=’bilinear’, align_corners=True)

def forward(self, x): # Input: (B, 1, 112, 112)
x = F.relu(self.bnl(self.convli(x))) # (B, 3,
112, 112)

10

11

X = torch.sigmoid(x) # scale to [0, 1]

X

X

return x

self .upsample(x) # (B, 3,
x * 255.0 # scale to

[O!

224,
255]

224)

Listing B.5: 3D Mapper CNN Implementation (3-1-sigmoid)

Bal Acc (%)

Model Name Mapping Features Epoch

Train Val Test
64-128-3-sigmoid CNN cQT 7 95.1 91.9 88.3
64-128-3-sigmoid CNN MFCC 10 98.1 97.7 59.5
64-128-3-learnable CNN CcQT 9 98.9 96.6 89.3
64-128-3-learnable CNN MFCC 10 974 975 65.2
64-128-3-none CNN CcQT 8 97.9 96.8 T78.7
64-128-3-none CNN MFCC 10 98.6 96.3 63.3
64x5-3x1-sigmoid CNN cQT 8 94.5 90.7 90.1
64x5-3x1-sigmoid CNN MFCC 7 97.8 97.7 55.3
3-1-sigmoid CNN cQT 8 97.1 95.8 86.5
3-1-sigmoid CNN MFCC 6 96.8 92.6 76.1
5-3-random LUT cQT 9 98.2 96.9 83.5
5-3-random LUT MFCC 7 97.4 94.7 66.6
10-3-random LUT cQT 7 97.4 95.5 84.2
10-3-random LUT MFCC 8 98.2 934 67.1
20-3-random LUT cQT 10 97.4 96.3 74.5
20-3-random LUT MFCC 7 95.7 934 56.2
40-3-random LUT cQT 9 97.7 93.9 81.9
40-3-random LUT MFCC 5 93.4 91.1 64.5
10-3-linear LUT cQT 7 97.8 94.8 92.1
10-3-linear LUT MFCC 9 97.3 959 61.3
10-1.5-linear LUT cQT 8 96.4 94.7 88.9
10-1.5-linear LUT MFCC 10 98.2 96.9 T7T2.1

Table B.1: Results of All Tested 3D Mapper Configurations and Features

test set with 20 features val set with 20 features

7 1.0 3 1.0
(=] (=}
% 0.73 %
<} : 0.8 S 0.8
o =l
c c
o] ©
14 14
% -0.6 B -0.6
Q o
a 0.73 a
(V] Q
x -0.4 x -0.4
g z
3 073 02 8 02
© ©
(8] o
0.0 0.0
TestAcc Macro F1 Balanced Accuracy Test Acc Macro F1 Balanced Accuracy
- test set with 30 features - val set with 30 features
? 1.0 ? 1.0
o o
(=] (=}
£ £
S [0-8 S 0.8
[=4 [=4
T ©
14 14
= -0.6 % -0.6
Q o
o o
o) o)
[O] Q
x -0.4 x -0.4
g z
o 0.2 o 0.2
o) o)
© ©
[&] o
0.0 0.0
Test Acc Macro F1 Balanced Accuracy Test Acc Macro F1 Balanced Accuracy
- test set with 40 features - val set with 40 features
3 1.0 @ 1.0
S S
£ £
S 0.8 S 0.8
c c
o] ©
14 14
% -0.6 % -0.6
o o
o o
o) o
[O] Q
x -0.4 x -0.4
® B
8 0.2 8 0.2
o) o)
© ®
[&] o
0.0 0.0
Test Acc Macro F1 Balanced Accuracy Test Acc Macro F1 Balanced Accuracy
- test set with 80 features - val set with 80 features
3 1.0 @ 1.0
S S
£ £
[=4 c
Il ©
14 12
= -0.6 % -0.6
o o
8 0.73 0.71 8
[O] Q
x -0.4 x -0.4
® B
3 0.2 8 0.2
a o)
© ®
[&] o
0.0 0.0
Test Acc Macro F1 Balanced Accuracy Test Acc Macro F1 Balanced Accuracy
- test set with 100 features - val set with 100 features
A 1.0 @ 1.0
<] S
£ =
c f=4
vl ©
o 12
% -0.6 % -0.6
o o
8 0.7 0.69 8
[O] Q
x -0.4 x -0.4
§ B
8 0.2 8 0.2
o) o)
K ®
(¢} o
0.0 0.0
Test Acc Macro F1 Balanced Accuracy Test Acc Macro F1 Balanced Accuracy

Figure B.1: Results of traditional ML, concatenating all the features (20
per type) including mel-spectrogram and reduced to 20, 30, 40, 80 and 100
features using RFE.

test set with 20 features val set with 20 features

% 1.0 g 1.0
o o
£ £
S 0.8 S 0.8
el el
[= [=
© ©
o 4
“ -0.6 % -0.6
o o
o o
o o
[©] 0]
x -0.4 x -0.4
g z
o 0.2 o 0.2
s} s}
® ®
(8} o
0.0 0.0
TestAcc Macro F1 Balanced Accuracy Test Acc Macro F1 Balanced Accuracy
- test set with 30 features - val set with 30 features
@ 1.0 ? 1.0
o o
(s} (s}
£ £
S 0.8 S 0.8
f=4 c
T ©
o o
o -0.6 % -0.6
o o
o o
e} s}
Q Q
x -0.4 x -0.4
@ k7
8 0.2 8 0.2
s} s}
© ©
[¢] (¢
0.0 0.0
Test Acc Macro F1 Balanced Accuracy Test Acc Macro F1 Balanced Accuracy
- test set with 40 features - val set with 40 features
@ 1.0 ? 1.0
o o
(=} (=}
£ £
S 0.8 k] 0.8
f= [=
@ ©
o 14
% -0.6 3 -0.6
o o
o o
0 s}
Q o
x -0.4 x -0.4
@ ?
8 0.2 8 0.2
[25] 2]
® ©
(] o
0.0 0.0
Test Acc Macro F1 Balanced Accuracy Test Acc Macro F1 Balanced Accuracy
- test set with 80 features - val set with 80 features
2 1.0 @ 1.0
S S
£ £
S 0.8 S 0.8
el =l
[= [=
© ©
o 14
% -0.6 % -0.6
o o
o o
[2a] o
[©] 0]
x -0.4 x -0.4
B k7]
8 0.2 8 0.2
s} s}
® ®
(8} o
0.0 0.0
Test Acc Macro F1 Balanced Accuracy Test Acc Macro F1 Balanced Accuracy
- test set with 100 features - val set with 100 features
2 1.0 2 1.0
S S
£ £
S 0.8 S 0.8
c c
T ©
o i
“ -0.6 % -0.6
o o
o o
s} s}
Q o
x -0.4 x -0.4
@ k7
8 0.2 8 0.2
s} s}
© ©
[¢] o
0.0 0.0
Test Acc Macro F1 Balanced Accuracy Test Acc Macro F1 Balanced Accuracy

Figure B.2: Results of traditional ML, concatenating all the features (20
per type) excluding mel-spectrogram and reduced to 20, 30, 40, 80 and 100
features using RFE.

test set with 20 features val set with 20 features

‘g 1.0 g 1.0
(=} (=}
£ S
S 0.8 S 0.8
[=4 f=
] ©
o o
“ -0.6] -0.6
o o
o o
o) m
Q [©]
x -0.4 x -0.4
® ?
8 0.2 8 0.2
o a
® ®
(8] o
0.0 0.0
Test Acc Macro F1 Balanced Accuracy TestAcc Macro F1 Balanced Accuracy
- test set with 30 features - val set with 30 features
3 1.0 2 1.0
S 5
£ £
S 0.8 <] 0.8
e el
c f=
vl vl
14 o
= -0.6 % -0.6
o o
o o
o) e}
[O] [©]
x -0.4 x -0.4
@ ?
8 0.2 8 0.2
aq s}
© ©
o [¢]
0.0 0.0
Test Acc Macro F1 Balanced Accuracy Test Acc Macro F1 Balanced Accuracy
- test set with 40 features - val set with 40 features
? 1.0 @ 1.0
o <
(=} (=}
£ £
S 0.8 s 0.8
c f=
© ©
o o
% -0.6] -0.6
o o
o o
o) m
Q [©]
x -0.4 x -0.4
® ?
8 0.2 8 0.2
o 23]
® ®
(8] (]
0.0 0.0
Test Acc Macro F1 Balanced Accuracy TestAcc Macro F1 Balanced Accuracy
- test set with 80 features - val set with 80 features
3 1.0 2 1.0
S S
£ 't
s} 0.8 Is] 0.8
o el
c =
vl <
14 o
% -0.6 % -0.6
o o
o o
o 23]
Q [©]
x -0.4 x -0.4
g g
o) 0.2 <} 0.2
aq s}
© ©
o (&}
0.0 0.0
Test Acc Macro F1 Balanced Accuracy Test Acc Macro F1 Balanced Accuracy
- test set with 100 features - val set with 100 features
@ 1.0 @ 1.0
o <
(=} (=}
£ 't
S 0.8 S 0.8
[=4 f=
© @
o o
% -0.6 3 -06
[} o
o o
o) 0
a Q
x -0.4 x -0.4
g g
o 0.2 <3 0.2
o 23]
® ®
(o] (]
0.0 0.0
Test Acc Macro F1 Balanced Accuracy Test Acc Macro F1 Balanced Accuracy

Figure B.3: Results of traditional ML, concatenating all the features (40
per type) excluding mel-spectrogram and reduced to 20, 30, 40, 80 and 100
features using RFE.

Appendix C

Explainability Supplementary
Results

128

Receiver Operating Characteristic - val set

1.0 4 =
0.8
]
2
5 0.6
2 L
o -
o e
[el
5 0.4 %
= L
0.2 4
- ROC curve (area = 1.00)
0.0 + T T T T
0.0 0.2 0.4 0.6 0.8 1.
False Positive Rate
Receiver Operating Characteristic - test set
1.0 =
0.8
]
2
» 0.6
2 %
o 2
a e
(] s
'g 0.4 e
0.2
y < ROC curve (area = 1.00)
0.0 + T T T T
0.0 0.2 0.4 0.6 0.8 1.

False Positive Rate

Precision

0

(a)

Precision

0

(b)

Precision-Recall Curve - val set

1.00

0.98

0.96

<

©

i
L

0.92 1

0.90 1

0.88

= PR curve (area = 1.00)

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Recall

Precision-Recall Curve - test set

1.00 1

0.95

0.90 1

0.85

0.80

0.75 1

—

= PR curve (area = 1.00)

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure C.1: ROC and PR curves of DeepSpectraNetLite on: a) Validation
Set, b) Test Set.

Validation Set Test Set

0.8 550 0.8
23.80%
0.6 0.6
[o
I~ I~
= =
-0.4 -0.4
9758 1701
0, 0,
86.32% 0.2 73.60% 02

Predicted Predicted

Figure C.2: Confusion Matrix of DeepSpectraNetLite

Receiver Operating Characteristic - val set

Precision

1.0 A %
0.8 i
]
&
» 0.6
2 -
G
o /s
a pd
[} L
> 0.4 S
= L
0.2 1 e
d ROC curve (area = 1.00)
0.0 + T T T T
0.0 0.2 0.4 0.6 0.8 1.
False Positive Rate
Receiver Operating Characteristic - test set
1.0 =
0.8
g
£
v 0.6
= L
o 2
o 4
%) e
3 0.4
= L
021
, - ROC curve (area = 1.00)
0.0 + - - : .
0.0 0.2 0.4 0.6 0.8 1.

False Positive Rate

0

(a)

Precision

0

(b)

Precision-Recall Curve - val set

1.00

0.98

0.96 1

0.94

0.92 1

0.90 1

0.88

= PR curve (area = 1.00)

T T T T T
0.0 0.2 0.4 0.6 0.8
Recall

Precision-Recall Curve - test set

1.0

1.00 -

0.95 4

0.90 1

0.85 1

0.80 1

0.75 4

= PR curve (area = 1.00)

0.0 0.2 0.4 0.6 0.8
Recall

1.0

Figure C.3: ROC and PR curves of DeepSpectraNetFlex on: a) Validation
Set, b) Test Set.

True

Validation Set

1495 0.8
13.22%

0.6

-0.4

-0.2

Predicted

True

Test Set

Predicted

Figure C.4: Confusion Matrix of DeepSpectraNetFlex

0.8

0.6

-0.4

-0.2

Receiver Operating Characteristic - val set Precision-Recall Curve - val set
1.0 1.00 W
2087 0.951
© -
o 7 -
] J g o
2 0.6 5 0.901
3
o
0.4 o
g 0.851
=
0.2
0.801
e ROC curve (area = 1.00) —— PR curve (area = 1.00)
0.0 0.2 0.4 0.6 0.8 1.0 00 02 04 06 08 1.0
False Positive Rate Recall
(a)
Receiver Operating Characteristic - test set Precision-Recall Curve - test set
1.0 1.001
0.81 0.95 1
L
©
o ’ c
2061 d S 0.901
5 0
2
o 4
3 0.4 a 0.85
>
lt -
0.2 - 0.80 1
, ROC curve (area = 0.98) —— PR curve (area = 0.99)
0.0 , , , , 0.751 , , , : :
0.0 0.2 0.4 0.6 0.8 1.0 00 02 04 06 08 1.0
False Positive Rate Recall
(b)

Figure C.5: ROC and PR curves of DeepSpectraNetE2E on: a) Validation

Set, b) Test Set.

Validation Set

Test Set

0.8 510
22.89%
0.6
[} 9}
=} >
= IS
-0.4
-0.2

Predicted

Figure C.6: Confusion M

Predicted

atrix of DeepSpectraNetE2E

0.8

0.6

-0.4

-0.2

Worst Errors

Validation Set Test Set
True Class True Class
= 0
@ A R R SN xS O A @ 00, DN > O DO DN D o D
N I~ S
N S A I R NN LN o e 3 I MG R I AR IR
RN N N O NI NN A YR S YL
(\\z (\\0 Q (\\o (\\0 (\\0 Q (\\Q, (\\z (\\z (\\z (\\0 (\\0 (\\o (\\0 Q7 Q Q Q Q QD

filename_short filename_short

Figure C.7: Worst Errors of DeepSpectraNetLite

Worst Errors

Validation Set Test Set

True Class True Class

filename_short filename_short

Figure C.8: Worst Errors of DeepSpectraNetFlex

Worst Errors

Validation Set Test Set

True Class

True Class

X D Ak A0 O D D H D 0
PSS EESS
v&'&e‘(\\e (\\K\\o Q7 QX

filename_short

filename_short

Figure C.9: Worst Errors of DeepSpectraNetE2E

CQT 3DMapper - Fake Val file5444
Input

Figure C.10: DeepSpectraNetLite Mapper Output for a Random CQT Fake
Audio Sample (Validation Set)

CQT 3DMapper - Fake Test file350
Input

Figure C.11: DeepSpectraNetLite Mapper Output for a Random CQT Fake
Audio Sample (Test Set)

MFCC 3DMapper - Fake Val file5444
Input

Figure C.12: DeepSpectraNetLite Mapper Output for a Random MFCC
Fake Audio Sample (Validation Set)

MFCC 3DMapper - Fake Test file350
Input

Figure C.13: DeepSpectraNetLite Mapper Output for a Random MFCC
Fake Audio Sample (Test Set)

CQT 3DMapper - Fake Val file5444
Input

Figure C.14: DeepSpectraNetFlex Mapper Output for a Random CQT Fake
Audio Sample (Validation Set)

CQT 3DMapper - Fake Test file350
Input

Figure C.15: DeepSpectraNetFlex Mapper Output for a Random CQT Fake
Audio Sample (Test Set)

MFCC 3DMapper - Fake Val file5444
Output

Input

Figure C.16: DeepSpectraNetFlex Mapper Output for a Random MFCC
Fake Audio Sample (Validation Set)

MFCC 3DMapper - Fake Test file350

Output

Input

Figure C.17: DeepSpectraNetFlex Mapper Output for a Random MFCC
Fake Audio Sample (Test Set)

CQT test Input

CQT test GradCAM Combined CQT test GradCAM Separated

MFCC test Input MFCC test GradCAM Combined MFCC test GradCAM Separated

Figure C.18: Grad-CAM Analysis of DeepSpectraNetLite on a Test Set
Sample. Grad-CAM Combined refers to the combined model which takes
both MFCC and CQT features as input, while Grad-CAM Separated is
obtained splitting the combined model into two separate models, one for
each feature set.

CQT val Input

CQT val GradCAM Combined CQT val GradCAM Separated

MFCC val Input

MFCC val GradCAM Combined

MFCC val GradCAM Separated

Figure C.19: Grad-CAM Analysis of DeepSpectraNetLite on a Validation
Set Sample. Grad-CAM Combined refers to the combined model which
takes both MFCC and CQT features as input, while Grad-CAM Separated
is obtained splitting the combined model into two separate models, one for
each feature set.

CQT test Input

CQT test GradCAM Combined CQT test GradCAM Separated

MFCC test Input MFCC test GradCAM Combined MFCC test GradCAM Separated

Figure C.20: Grad-CAM Analysis of DeepSpectraNetFlex on a Test Set
Sample. Grad-CAM Combined refers to the combined model which takes
both MFCC and CQT features as input, while Grad-CAM Separated is
obtained splitting the combined model into two separate models, one for
each feature set.

CQT val Input

CQT val GradCAM Combined CQT val GradCAM Separated

MFCC val Input MFCC val GradCAM Comblned MFCC val GradCAM Separated

Figure C.21: Grad-CAM Analysis of DeepSpectraNetFlex on a Validation
Set Sample. Grad-CAM Combined refers to the combined model which
takes both MFCC and CQT features as input, while Grad-CAM Separated
is obtained splitting the combined model into two separate models, one for
each feature set.

True Positives - CQT Grad-CAM False Positives - CQT Grad-CAM True Positives - MFCC Grad-CAM False Positives - MFCC Grad-CAM

AVG #pixels > 0.6: 1524 AVG #pixels > 0.6: 1374 AVG #pixels > 0.6: 1322 AVG #pixels > 0.6: 230

True Negatives - CQT Grad-CAM False Negatives - CQT Grad-CAM True Negatives - MFCC Grad-CAM False Negatives - MFCC Grad-CAM

AVG #pixels > 0.6: 749 AVG #pixels > 0.6: 92 AVG #pixels > 0.6: 749 AVG #pixels > 0.6: 135

(a) (b)

Figure C.22: Average Grad-CAM of DeepSpectraNetLite on Validation Set
Subset splitted in TP (upper left), TN (lower left), FP (upper right), FN
(lower right) samples. a) Results for the CQT features, b) Results for the
MFCC features.

True Positives - CQT Grad-CAM False Positives - CQT Grad-CAM True Positives - MFCC Grad-CAM False Positives - MFCC Grad-CAM

AVG #pixels > 0.6: 1513 AVG #pixels > 0.6: 1089 AVG #pixels > 0.6: 850 AVG #pixels > 0.6: 617

True Negatives - CQT Grad-CAM False Negatives - CQT Grad-CAM True Negatives - MFCC Grad-CAM False Negatives - MFCC Grad-CAM

AVG #pixels > 0.6: 909 AVG #pixels > 0.6: 260 AVG #pixels > 0.6: 471 AVG #pixels > 0.6: 199

(a) (b)

Figure C.23: Average Grad-CAM of DeepSpectraNetLite on Test Set Subset
splitted in TP (upper left), TN (lower left), FP (upper right), FN (lower
right) samples. a) Results for the CQT features, b) Results for the MFCC
features.

True Positives - CQT Grad-CAM False Positives - CQT Grad-CAM

AVG #pixels > 0.6: 1749

AVG #pixels > 0.6: 2447

True Negatives - CQT Grad-CAM False Negatives - CQT Grad-CAM

AVG #pixels > 0.6: 1167

AVG #pixels > 0.6: 357

(a)

True Positives - MFCC Grad-CAM

False Positives - MFCC Grad-CAM

AVG #pixels > 0.6: 1631 AVG #pixels > 0.6: 1469

True Negatives - MFCC Grad-CAM False Negatives - MFCC Grad-CAM

AVG #pixels > 0.6: 1589 AVG #pixels > 0.6: 455

(b)

Figure C.24: Average Grad-CAM of DeepSpectraNetFlex on Validation Set
Subset splitted in TP (upper left), TN (lower left), FP (upper right), FN
(lower right) samples. a) Results for the CQT features, b) Results for the

MFCC features.

True Positives - CQT Grad-CAM False Positives - CQT Grad-CAM

AVG #pixels > 0.6: 1260 AVG #pixels > 0.6: 506

True Negatives - CQT Grad-CAM False Negatives - CQT Grad-CAM

AVG #pixels > 0.6: 1379 AVG #pixels > 0.6: 599

()

True Positives - MFCC Grad-CAM False Positives - MFCC Grad-CAM

True Negatives - MFCC Grad-CAM False Negatives - MFCC Grad-CAM

AVG #pixels > 0.6: 1054

AVG #pixels > 0.6: 808

(b)

Figure C.25: Average Grad-CAM of DeepSpectraNetFlex on Test Set Sub-
set splitted in TP (upper left), TN (lower left), FP (upper right), FN (lower
right) samples. a) Results for the CQT features, b) Results for the MFCC

features.

	Introduction
	Context
	What are DeepFakes?
	History of DeepFakes

	Research Rationale
	DeepFakes Applications

	Research Questions
	Thesis Outline

	Background
	Audio DeepFakes Typologies
	Text-to-Speech (TTS)
	Voice Conversion (VC)
	Partially Fake Audios
	Replay Attack

	DeepFake Detection Methods
	Signal Processing Methods
	Traditional Machine Learning Methods
	Deep Learning Methods

	Audio Features
	Machine Learning Models
	Traditional Models
	Deep Learning Models

	Methods and Experiments
	Dataset
	Dataset Selection
	Dataset Preprocessing

	Feature Engineering
	Feature Extraction Hyperparameters
	Extraction Details

	ML Models
	Base Models
	Features Reduction (RFE)

	DL Models
	Transfer Learning
	3-Channels Mapping
	Combining Fine-Tuning and Mapping
	Combining Features
	Final Model
	Fully E2E Version

	Results and Explainability
	Experimental Setup
	Local Machine
	Lightning AI Cloud

	Evaluation Metrics
	Accuracy
	Balanced Accuracy
	F1 Score
	PR AUC
	ROC AUC
	Equal Error Rate (EER)

	Results
	Traditional Machine Learning
	Deep Learning
	Overall Comparison

	Explainability
	Traditional Machine Learning
	Deep Learning

	Conclusions
	Feature Engineering Supplementary Results
	Models Supplementary Results
	Explainability Supplementary Results

